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H I G H L I G H T S

� We model the evolution of dispersal rates in a temporally variable environment.
� We develop asexual and sexual life-cycle models that we solve analytically.
� Resource matching is predicted in expectation before habitat quality variation.
� The individuals' distribution undermatches resources after habitat quality variation.
� The overall flow of individuals matches the overall flow of resources between patches.
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a b s t r a c t

Metapopulations may consist of patches of different quality, and are often disturbed by extrinsic
processes causing variation of patch quality. The persistence of such metapopulations then depends on
the species' dispersal strategy. In a temporally constant environment, the evolution of dispersal rates
follows the resource matching rule, i.e. at the evolutionarily stable dispersal strategy the number of
competitors in each patch matches the resource availability in each patch. Here, we investigate how the
distribution of individuals resulting from convergence stable dispersal strategies would match the
distribution of resources in an environment which is temporally variable due to extrinsic disturbance.
We develop an analytically tractable asexual model with two qualities of patches. We show that
convergence stable dispersal rates are such that resource matching is predicted in expectation before
habitat quality variation, and that the distribution of individuals undermatches resources after habitat
quality variation. The overall flow of individuals between patches matches the overall flow of resources
between patches resulting from environmental variation. We show that these conclusions can be
generalized to organisms with sexual reproduction, and to a metapopulation with three qualities of
patches when there is no mutational correlation between dispersal rates.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many natural populations occupy a spatially fragmented land-
scape and may be satisfactorily described as metapopulations, i.e.
as arrays of subpopulations connected by dispersal. The persis-
tence of metapopulations depends both on the rate of disturbance
and succession – an extrinsic variable – and on the species' dis-
persal properties (Levin and Paine, 1974). Dispersal may thus be

viewed as an adaptation to ephemeral habitats: dispersal may
allow tracking favorable environments (Recer et al., 1987), or, if
tracking is not possible, may be a bet-hedging strategy (Philippi
and Seger, 1989; McPeek and Holt, 1992). Analyzing the distribu-
tion of individuals across space and time is another way to look at
dispersal strategies which has been fruitful for decades.

Fretwell and Lucas (1969) introduced the concept of ideal free
distribution to predict the distribution of organisms competing for
resources in patchy, heterogeneous landscapes. Their seminal
work assumed that competitors are equal in food acquisi-
tion ability, move between patches at no cost, and have perfect
information of the resource supply and competitors' distribution.
In these conditions, the number of competitors in each patch is
predicted to match the resource availability in each patch. More
generally, the ideal free distribution is the one such that an
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individual could not attain higher fitness by relocating to another
patch. This distribution has been shown to be evolutionarily stable
when fitness is a negative function of density (Cressman and
Křivan, 2006; Křivan et al., 2008). However, experiments often
report undermatching, i.e. a lack of individuals in the more
rewarding patches, and an excess in the less rewarding patches
(Kennedy and Gray, 1993). This may be the result of deviations
from the initial hypotheses, such as imperfect knowledge of patch
quality or unequal competitive abilities (Abrahams, 1986; Houston
and McNamara, 1988). Undermatching is also the outcome of
most experiments when the resource supply rate varies within
patches (Recer et al., 1987; Earn and Johnstone 1997; but see
Hakoyama, 2003).

Spatial and temporal variability of the environment may be
satisfactorily described as Markovian process, where the prob-
ability to reach a given state at the next time step only depends on
the state at its present time. For example, a Markovian process has
been used to describe the states of vegetation in a forest with tree
replacement (Wagooner and Stephens, 1970; Horn, 1975), and to
describe disturbed environments submitted to fires (Callaway and
Davis, 1993; Hibbard et al., 2003). Theoretical studies also have
consistently applied a Markovian process to variable environ-
ments, e.g. to model environments subject to climate disturbance
(Casagrandi and Gatto, 2002; Tuljapurkar et al., 2003). In a
metapopulation, Olivieri et al., (1995) described a general stochas-
tic process of patch extinction and succession with a Markov chain
at stationarity (see also Valverde and Silvertown, 1997). At statio-
narity, a Markov chain has a convenient property: the proportions
of time spent in the different states are constant over time. In
addition, a Markov chain allows to characterize the environmental
noise with its color (Vasseur and Yodzis, 2004), since a colored
noise can be interpreted as a continuous limit of a discrete
Markovian process (Ezard and Coulson, 2010). Although a Markov
chain may only approximate reality, it still provides an operational
and fruitful framework to understand the evolution of dispersal
(Cohen and Levin, 1991; Olivieri et al., 1995).

In this paper, we address the following question: in a spatially
and temporally variable environment described as a stationary
Markov chain, how would the distribution of individuals resulting
from dispersal evolution match the distribution of resources? We
develop an analytically tractable asexual model of dispersal
evolution with two qualities of patches in order to describe the
convergence stable (CS) strategies of dispersal rates. We show that
CS dispersal rates allow individuals to anticipate habitat quality
variation. The distribution of individuals is such that the number
of individuals in each kind of patch before habitat quality variation
matches the expected distribution of resources in these patches
after environmental variation. The overall flow of individuals
between patches then matches the overall flow of resources

between patches resulting from environmental variation. We
show that these conclusions can be generalized to organisms with
sexual reproduction, and to a metapopulation with three qualities
of patches when there is no mutational correlation between
dispersal rates.

2. The models

2.1. Asexual model

2.1.1. Environment properties
We consider a metapopulation with N patches large enough to

ignore kin effects and demographic stochasticity. Patches switch
between two quality states, “good” and “poor”, and are then called
“G-patches” and “P-patches” respectively. G-patches (respectively
P-patches) contain FG (respectively FP) resources. G-patches con-
tain F ¼ FG=FP41 more resources than P-patches. The amount
of resources available in a patch is proportional to its carrying ca-
pacity, so that G-patches can carry F times more individuals than
P-patches. At time t, G- and P-patches are in proportions gt and
1�gt , respectively.

We model temporal variation of the environment by changing
the quality of a proportion σ of the total number of patches in each
generation. A proportion σ=2 is G-patches that become P-patches,
and a proportion σ=2 is P-patches that become G-patches. We
assume that temporal variation of the environment is due to
external factors and does not depend on individuals' properties
and how they exploit resources, i.e. we assume that σ is a constant
parameter. The environment may be described as a two-state
Markov chain. This Markov chain has a stationary state, and gt can
be considered to be constant over time provided that N is large
enough. Our models assume such stationary state of the environ-
ment, and hereafter we denote g the constant proportion of G-
patches. Note that g is also the proportion of time that a patch
spends in state G (see Table 1 for a summary of the notation).

2.1.2. Individuals' properties
The asexual model describes an asexual life cycle with non

overlapping generations. A generation consists of

(i) Dispersal of individuals: dispersal follows an island model.
Dispersal rates depend on the quality of patches: a fraction
dG and dP of individuals disperse from G- and P-patches
respectively. Each dispersal rate is determined by a single
haploid locus. Dispersers do not select their destination
according to its quality. They are thus distributed in G- and
P-patches according to the proportions of these patches,
respectively g and 1–g. We assume cost-free dispersal.

Table 1
Notation used in the asexual model.

Variables
dI Dispersal rate of individuals of the resident population from I-patches
doI Dispersal rate of a focal (mutant) individual from I-patches

Parameters
g Proportion of G-patches
F I Carrying capacity of a I-patch F ¼ FG=FP41
σ Proportion of patches undergoing quality change at each generation

Outputs

dn

I
CS dispersal rate from I-patches (Eq. (10))

δnI Number of individuals (scaled relative to the total number of patches N) in I-patches after dispersal and before habitat quality variation, at the CS strategies (Eqs. (11)
and (12)).

ϕn

JI Flow of individuals that disperse from I-patches to J-patches before habitat quality variation (scaled relative to the total number of patches N), at the CS strategies
(Eqs. (13) and (15)).
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Individuals are unable to predict habitat variations of a
particular patch.

(ii) Variation of habitat quality (see Section 2.1.1)
(iii) Reproduction: offspring are produced in quantity enough to

saturate all patches.
(iv) Death of adults.
(v) Density regulation: in each G-patch (resp. P-patch), a number

of offspring proportional to FG (resp. FP) are drawn at random
to become individuals for the next generation, i.e. individuals
equally and locally compete for resources.

2.2. Model analysis

We aim to determine convergence stable (CS) strategies of
dispersal rates from G- and P-patches. A strategy consists of a vector
d¼ dP; dGð Þ. The resident strategy (i.e. the mean strategy of the
population) is denoted by d, a focal strategy (i.e. the strategy of a
rare mutant) by do, and a CS strategy by dn. To compute the fitness
function, we use the direct fitness formulation of the inclusive fitness
method from Taylor and Frank (1996), detailed below.

2.2.1. Fitness function
The fitness of a focal individual with strategy do is defined as the

expected long-term contribution in terms of number of gene copies
transmitted by this focal individual when the resident population
strategy is d. As we consider a haploid model, the number of gene
copies is also the number of offspring. We define two classes of
individuals: individuals born in a P-patch and those born in a
G-patch, denoted afterward P- and G-class individuals respectively.
The fitness W I do;d

� �
of an I-class focal individual (I¼G,P) will be

higher if such focal individual produces one offspring with a high
probability to be the ancestor of the future population than one
offspring with a low probability to be the ancestor; in other words,
W I do; d
� �

depends on the class of offspring. Then, following Taylor
(1990) and Rousset (2004), the fitness W I do; d

� �
can be defined as

the expected number of gene copies that an I-class focal individual
produces in a K-class (K¼G,P), WKI do; d

� �
, weighted by the asymp-

totic contribution to the future gene pool of the population of one
offspring from a K-class, i.e. the mean individual reproductive values
VG and VP (see Section 2.2.2 for their expression):

W I do; d
� �¼ VPWPI do;d

� �þVGWGI do; d
� �

: ð1Þ
Before producing offspring in a K-patch, an I-class focal indivi-

dual may have dispersed and/or the quality of the patch where it is
after dispersal may have changed. We can thus write

WKI d
o; d

� �¼ AKP dð ÞPKPI d
o� �þAKG dð ÞPKGI do

� �
; ð2Þ

where PKJI do
� �

is the probability that an I-class focal individual is in
a J-patch after dispersal and in a K-patch after habitat quality
variation, and AKJ dð Þ is the expected number of offspring that
survive density regulation, produced by an individual of resident
strategy d which is in a J-patch after dispersal and in a K-patch after
habitat quality variation.

Let us determine PKJI do
� �

. We denote σKJ the probability that a
J-patch is a K-patch after habitat quality variation, and PJI do

� �
the

probability that an I-class focal individual is in a J-patch after
dispersal. Then,

PKJI do
� �¼ σKJPJI do

� �
: ð3Þ

Recall that σ is the proportion of patches whose quality changes
in each generation, and that the proportions of G- and P-patches, g
and 1�g respectively, are constant over time. σKJ are thus expressed
by

σPP ¼ 1�σ= 2 1�gð Þð Þ
σPG ¼ σ= 2gð Þ

σGP ¼ σ= 2 1�gð Þð Þ
σGG ¼ 1�σ= 2gð Þ: ð4Þ

Consider now a P-class focal individual. It has a probability doP
to disperse, and a probability 1�doP to stay in its P-patch. If it
disperses, its dispersal is cost-free and it does not select the quality
of the patch where it disperses. In this case, it has thus a
probability 1�g to reach a P-patch. Therefore, the probability that
a P-class focal individual is in a P-patch after dispersal is
1�doPþ 1�gð ÞdoP. With the same reasoning we obtain all PJI do

� �
terms:

PPP do
� �¼ 1�doPþ 1�gð ÞdoP

PPG do
� �¼ 1�gð ÞdoG

PGP do
� �¼ gdoP

PGG do
� �¼ 1�doGþgdoG: ð5Þ

Let us now determine AKJ dð Þ introduced in Eq. (2). We call a “KJ-
patch” a K-patch that was a J-patch before habitat quality varia-
tion. Because we assume that offspring produced in a given patch
equally compete for resources, AKJ dð Þ is the ratio of the amount of
resources in KJ-patches over the number NKJ of individuals
reproducing in these patches (note that we use here the resident
dispersal strategy d because mutants are assumed to be rare, so
that the mutant strategy does not influence the number of
individuals in each patch). As the proportion of PP-patches is
1�g�σ=2, the total amount of resources available for reproduc-
tion in PP-patches is FPN 1�g�σ=2

� �
, where N is the total number

of patches. Consequently, APP dð Þ can be expressed as

APP dð Þ ¼ FPN 1�g�σ=2
� �

=NPP dð Þ:
Similarly:

APG dð Þ ¼ FPN σ=2
� �

=NPG dð Þ
AGP dð Þ ¼ FGN σ=2

� �
=NGP dð Þ

AGG dð Þ ¼ FGN g�σ=2
� �

=NGG dð Þ:

Individuals in a J-patch that will become a K-patch after habitat
quality variation may originate from G- or P-patches, so we can
write:

NKJ dð Þ ¼NPPKJP dð ÞþNGPKJG dð Þ;
where PKJI is defined by Eq. (3) and NI is the number of I-class
individuals.

The number of individuals produced in a I-patch equals the
amount of resources available in this patch, F I. Thus,

NP ¼N 1�gð ÞFP
NG ¼NgFG: ð6Þ

Combining the equations of this section allows to express the
fitness function of an I-class individual (Eq. (1)) with the four
parameters of the model (FG, FP, g and σ), the two variables (do and
d), and the reproductive values VP and VG, computed below.

2.2.2. Reproductive values
We recall that the mean reproductive values of a P- and G-class

individual, respectively VP and VG, are defined as the asymptotic
contribution of an individual born in a P-patch (respectively G-patch)
to the future gene pool of the population (Taylor, 1990; Rousset, 2004).
The vector of the individual reproductive values VP;VGð Þ is the left
eigenvector associated with the largest eigenvalue 1 of the fitness
functions matrix, evaluated in the neutral model (i.e. when do ¼ d)
such that:

VP;VGð Þ
WPP d;dð Þ WPG d; dð Þ
WGP d; dð Þ WGG d; dð Þ

" #
¼ VP;VGð Þ; ð7Þ
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where WKI d; dð Þ is defined by Eq. (2). This system generates two
collinear equations.

To solve Eq. (7), we used the normalization of reproductive
values QPVPþQGVG ¼ 1, where Q I is the proportion of I-class
individuals:

QP ¼
NP

NPþNG
¼ FP 1�gð Þ
FGgþFP 1�gð Þ

QG ¼ NG

NPþNG
¼ FGg
FGgþFP 1�gð Þ:

2.2.3. Convergence stability of singular strategies
The fitness of a focal individual with strategy do is W do;d

� �¼
QPWP do; d

� �þQGWG do; d
� �

. Preliminary results revealed that it is
helpful to analyze the model using alternative variables: instead of
writing the fitness as a function of the vectors d¼ dP;dGð Þ and do

above, we now express the fitness as a function of the vectors
v¼ dP; að Þ and v1 where a¼ FGdG�FPdP. Note that to make easier
the biological interpretation of the results, results will however
be expressed with the original variables. Selection measures
(Leturque and Rousset, 2002) evaluate the probability of fixation
of a rare mutant expressing the strategy vo, weakly different from
the resident strategy v. They are defined as

SP vð Þ ¼ ∂W vo; vð Þ
∂doP

j vo ¼ v

SA vð Þ ¼ ∂W vo; vð Þ
∂ao

j vo ¼ v: ð8Þ

These probabilities vanish at singular points, i.e. CS strategies vn

necessarily satisfy:

SP vn
� �¼ 0

SA vn
� �¼ 0: ð9Þ
Following Leimar (2009), in the case of vector-valued traits as

we use here, a sufficient criterion for a singular strategy to be
convergent stable is that the Jacobian matrix of the selection
gradient, evaluated at the singular strategy, is negative definite.
The Jacobian matrix is defined by J ¼HþQ where

H ¼

∂2Wðvo; vÞ
∂doP∂d

o
P

∂2Wðvo; vÞ
∂doP∂a1

∂2Wðvo; vÞ
∂ao∂doP

∂2Wðvo; vÞ
∂ao∂ao

0
BBBB@

1
CCCCA

is the selection Hessian matrix and

Q ¼

∂2Wðvo; vÞ
∂doP∂dP

∂2Wðvo; vÞ
∂doP∂a

∂2Wðvo; vÞ
∂ao∂dP

∂2Wðvo; vÞ
∂ao∂a

0
BBBB@

1
CCCCA:

This method to determine convergence stability of singular
strategies allows taking into account possible mutational correla-
tions between traits (Leimar, 2009).

We show that there is an infinite number of singular strategies
because after changing the variables of the model, one of the two
traits can be considered as selectively neutral (see Results and
Appendix A.1). Consequently, our Jacobian matrix of the selection
gradient evaluated at any of the singular strategies, Jn, cannot be
negative definite, so that Leimar's (2009) sufficient criterion
cannot be used directly. However, according to his work, the local
dynamics of trait evolution around a singular strategy vn is desc-
ribed by dðv�vnÞ=dt ¼ AJnðv�vnÞ where A is the mutational matrix.
We will thus compute the product AJn for all of the singular
strategies and we will show that it is a semi-negative definite
matrix, the non-zero eigenvalue of which corresponding to the

trait under selection. This allows us to conclude that the trait
under selection of any of the singular strategies is convergent
stable in the sense of Lyapunov (Leimar, 2009). The other trait can
change neutrally and/or evolve following genetic correlations
between the two traits, but it does not converge to a specific value.

According to Leimar (2009), a sufficient condition for conver-
gent stable strategies to be also evolutionarily stable is that the
Hessian matrix evaluated at the singular strategy, Hn, is negative
definite. We show (Appendix A.1) that in our model, Hn equals the
zero matrix, which does not allow us to conclude about evolutio-
narily stability nor instability.

2.3. Sexual models

We modify the asexual model to take into account sexual
reproduction. The life cycle is then:

(i) Dispersal of individuals: males and females disperse from I-
patches at rate dmI and df I respectively.

(ii) Mating: Males compete for the fertilization of females within
each patch. We assume that males are produced in quantity
enough to fertilize all females so that the number of females
is limiting. Without loss of generality, we assume that the
number of zygotes produced in each patch is equal to the
number of females.

(iii) Dispersal of zygotes: zygotes disperse from I-patches at rate dzI.
Zygote dispersal can also be interpreted as dispersal of mated
females. We assume that the primary sex-ratio is balanced and
that the number of zygotes produced is large enough to
saturate each patch. In our model, the dispersal rate dzI of
zygotes may be determined by the genotype of both parents, or
only by the genotype of the female parent; both assumptions
lead to the same results (see Appendix B for details).

(iv) Habitat quality variation (see section 2.1.1).
(v) Death of adults.
(vi) Density regulation: in each G-patch (resp. P-patch), a number

of zygotes proportional to FG (resp. FP) are drawn at ran-
dom to become sexually mature individuals for the next
generation.

When zygotes do not disperse (dzI ¼ 0), the model is called
“DDM” (for “male Dispersal, female Dispersal, Mating”; Taylor,
1994). The DDM model fits a standard animal life cycle. When
females do not disperse before mating (df I ¼ 0), the model is called
“DMD” (for “male Dispersal, Mating, zygote Dispersal”; Taylor,
1994). The DMD model fits most plant life cycles, and can also be
applied to some animals (Taylor, 1994; Guillon and Bottein, 2011).
A detailed presentation of the sexual models and the correspond-
ing analyses are given in Appendix B.

2.4. Asexual model with three qualities of patches

The structure of an environment is usually more complex than
patches of only two possible qualities. We use an asexual model
with three qualities of patches (hereafter called “three-patch
model”) to try to generalize our results to more complex environ-
ments. A detailed presentation of the three-patch model and the
corresponding analysis are given in Appendix C.

3. Results

3.1. Asexual model

We show (Appendix A.1) that CS dispersal rates from G- and
P-patches are those within the interval [0,1] that satisfy the
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equation:

FGd
n

G�FPd
n

P ¼
σ FG�FPð Þ
2g 1�gð Þ : ð10Þ

When habitat quality does not vary in time (σ ¼ 0), Eq. (10)
becomes FGd

n

G ¼ FPd
n

P. Thus, as expected, not to disperse is a CS
strategy in a temporally constant environment. Nevertheless, non-
zero dispersal strategies are possible. In this case, dispersal from P-
patches is then F ¼ FG=FP times higher than from G-patches. As a G-
patch can carry F times more individuals than a P-patch, all CS
dispersal strategies lead to the same distribution of individuals, with F
times more individuals in a G-patch than in a P-patch. In other words,
the distribution of individuals matches the distribution of resources.

In a temporally variable environment (σ40), Eq. (10) shows
that dispersal from G-patches increases relative to dispersal from
P-patches when habitat quality variation increases (Fig. 1). Indeed,
the more habitat quality is likely to change, the more individuals
in G-patches are likely to have offspring in P-patches if they do not
disperse, thus the more they should disperse. Conversely, the more
habitat quality is likely to change, the more individuals in P-
patches should stay in their patch which is more likely to become
a G-patch. Consequently, individuals may disperse more from P-
patches than from G-patches only when habitat quality variation is
not too frequent.

Is the resources matching rule still valid? To answer to this
question, let us define δI dð Þ as the number of individuals (scaled
relative to the total number of patches N) after dispersal and before
habitat quality variation in I-patches (we recall that d¼ dP; dGð Þ)
δG dð Þ ¼ gFGPGG dð Þþ 1�gð ÞFPPGP dð Þ
δP dð Þ ¼ gFGPPG dð Þþ 1�gð ÞFPPPP dð Þ; ð11Þ
with PJI defined by Eq. (5). Using CS dispersal rates (Eq. (10)), the
distribution of individuals can be expressed as

δG dn
� �

δP dn
� � ¼ gFG�σ FG�FPð Þ=2

1�gð ÞFPþσ FG�FPð Þ=2: ð12Þ

When habitat quality varies in time, the distribution of individ-
uals after dispersal and before habitat quality variation is thus the
distribution expected in a constant environment ( gFGð Þ= 1�gð ÞFPð Þ),
corrected by a term σ FG�FPð Þ=2. As this term is positive, there are
fewer individuals in G-patches and more individuals in P-patches
than expected in a temporally constant environment.

Let ϕJI dð Þ be the flow of individuals that disperse from I-patches
to J-patches before habitat quality variation (scaled relative to the

total number of patches N),

ϕPG dð Þ ¼ gFGPPG dð Þ
ϕGP dð Þ ¼ 1�gð ÞFPPGP dð Þ; ð13Þ

and let ψP (respectively ψG) be the amount of resources (scaled
relative to the total number of patches N) created by habitat quality
variation in P-patches (respectively G-patches) that becomes G-
patches (respectively P-patches),

ψP ¼ 1�gð ÞσGP FG�FPð Þ

ψG ¼ gσPG FP�FGð Þ; ð14Þ

with σKJ defined by Eq. (4). Then, simple algebra shows that the
condition given by Eq. (10) can be written as

ϕPG dn
� ��ϕGP dn

� �¼ ψP ¼ �ψG ¼ σ

2
FG�FPð Þ: ð15Þ

Eq. (15) can be interpreted as follows: at the CS strategies, the
net flow of individuals that disperse to P-patches before habitat
quality variation must equal the amount of resources created in P-
patches (and the amount of resources destroyed in G-patches) due
to habitat quality variation. The term σ FG�FPð Þ=2 in Eq. (12) can
thus be interpreted as an anticipation of habitat quality variation:
according to Eq. (15), the number of individuals in all G- or P-
patches before habitat quality variation matches the expected
distribution of resources in these patches after environmental
variation.

Now consider the distribution of individuals in G- and P-
patches after habitat quality variation. When 0oσo1, individuals
dispersing to P-patches do not know which P-patch will become a
G-patch. They are uniformly distributed among all P-patches, thus
with a lack of individuals in future G-patches and an excess of
individuals in future P-patches. The same is true for individuals
dispersing to G-patches: because they do not know which G-patch
will become a P-patch, there will be a lack of individuals in future
G-patches and an excess of individuals in future P-patches. Thus,
except when σ ¼ 0 or when σ ¼ 1, which make the environment
completely predictable, the actual distribution of individuals after
habitat quality variation necessarily undermatches resources (see
Appendix A.2).

Another way to understand Eq. (10) is to decompose CS dispersal
rates into two dispersal parts. First, a balanced dispersal part (i.e.
FGd

n

G ¼ FPd
n

P): the number of immigrants is equal to the number of
emigrants in patches of each quality. This dispersal part is the only one
in a temporally constant environment. Second, an unbalanced dis-
persal part (term σ FG�FPð Þ= 2g 1�gð Þð Þ), which is added to the
balanced dispersal part in a temporally variable environment. This
unbalanced dispersal part generates an excess of σ FG�FPð Þ=2 indivi-
duals in P-patches (Eq. (12)), which exactly matches the amount of
resources created in P-patches by habitat quality variation (Eq. (15)).
As a result, unbalanced dispersal in a temporally variable environment
allows anticipating habitat quality variation.

3.2. Sexual models

We show (Appendix B.2) that singular dispersal rates from G-
and P-patches are, for the DDM model (no zygote dispersal,
dozI ¼ dzI ¼ 0), those within the interval [0,1] satisfying the equa-
tions

FGd
n

f G�FPd
n

fP ¼
σ FG�FPð Þ
2g 1�gð Þ

FGd
n

mG�FPd
n

mP ¼
σ FG�FPð Þ
2g 1�gð Þ ; ð16Þ

Fig. 1. Asexual model, pairs of dispersal rates from P-patches (dn

P) and from
G-patches (dn

G) that are CS (Eq. (10)), as a function of the intensity of habitat
quality variation (σ). Parameter values: g¼ 0:5, FG ¼ 2, FP ¼ 1.
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and for the DMD model (no female dispersal, dof I ¼ df I ¼ 0), those
between 0 and 1 and satisfying the equations

FGd
n

zG�FPd
n

zP ¼
σ FG�FPð Þ
2g 1�gð Þ

FGd
n

mG�FPd
n

mP ¼ 0: ð17Þ

For both sexual models, we numerically verified that the above sin-
gular strategies are all convergent stable, even assuming mutational
correlations between dispersal rates (see Appendix B.2 for details).

A first consequence of the above equations is that at the CS
strategies the distribution of male gametes necessarily matches
the distribution of female gametes after dispersal. In the case of
the asexual model, we have interpreted the CS strategies using the
distributions and the flows of individuals in G- and P-patches. For
sexual models, it is helpful to consider the distributions and the
flows of gene copies transmitted via females and males to inter-
pret CS dispersal rates. For both DDM and DMD models, simple
algebra shows that, after zygotes dispersal and before habitat
quality variation, the expected number of gene copies transmitted
in I-patches (scaled relative to the total number of patches N) via
females and males (δfI dð Þ and δmI dð Þ; see Appendix B.1 for details),
satisfy the following equality at the CS strategies:

δfG dn
� �

δfP dn
� � ¼ δmG dn

� �
δmP dn
� �¼ gFG�σ FG�FPð Þ=2

1�gð ÞFPþσ FG�FPð Þ=2: ð18Þ

Moreover, for both DDM and DMD models, the net flow of gene
copies (scaled relative to the total number of patches N) trans-
mitted to P-patches via either females or males (ϕf

PG dð Þ�ϕf
GP dð Þ

and ϕm
PG dð Þ�ϕm

GP dð Þ; see Appendix B.1 for details) matches the
amount of resources created in P-patches due to habitat quality
variation (ψP , Eq. (14)) at the CS strategies:

ϕf
PG dn
� ��ϕf

GP dn
� �¼ ϕm

PG dn
� ��ϕm

GP dn
� �¼ ψP ¼ �ψG ¼ σ

2
FG�FPð Þ:

ð19Þ
These results show obvious similarities with those of the asexual

model. Let us check that they can be interpreted in the same way, and
notice some special features of the sexual models. According to Eqs.
(18) and (19), CS dispersal rates (Eq. (16) for the DDM model and Eq.
(17) for DMD model) are those leading to a number of gene copies in
all G- or P-patches before habitat quality variation that matches the
expected distribution of resources available in these patches after
habitat quality variation. This distribution is achieved thanks to an
unbalanced part of dispersal (term σ FG�FPð Þ= 2g 1�gð Þð Þ), which
generates a net positive flow of σ FG�FPð Þ=2 gene copies to P-patches;
this flow exactly matches the amount of resources created in P-patches
by habitat quality variation. The results of the DDM and DMD sexual
models can thus be interpreted in the sameway as those of the asexual
model, except that in the asexual model, the distribution of gene copies
is immediately interpretable as the distribution of individuals.

In the DDM model, zygotes cannot disperse. As for the asexual
model, CS dispersal rates can be decomposed into a balanced part
of dispersal and an unbalanced part. Female and male unbalanced
parts are necessarily identical (term σ FG�FPð Þð Þ= 2g 1�gð Þð Þ in
Eq. (16)), allowing for a balanced sex-ratio at the time of mating
(Guillon et al., 2006). The balanced part (dispersal rates such that
FGd

n

fG ¼ FPd
n

fP and FGd
n

mG ¼ FPd
n

mP) can be achieved with different
dispersal rates for males and females.

In the DMD model, females cannot disperse before mating. CS
male dispersal rates are then balanced (Eq. (17), second line): the
distribution of males is identical before and after male dispersal at
the CS strategies, allowing for a balanced sex-ratio at the time of
mating. Then zygotes, which carry gene copies transmitted via
both females and males, disperse as individuals do in the asexual
model. Zygote dispersal is again in part balanced, which does not

modify their distribution, and in part unbalanced, allowing antici-
pating habitat quality variation (Eq. (17), first line).

In summary, the results of the asexual model and their interp-
retation can be extended to the DDM and DMD sexual models. CS
strategies anticipate habitat quality variation, so that the number
of individuals in all G- or P-patches before habitat quality variation
finally matches the expected distribution of resources available in
these patches after habitat quality variation.

3.3. Asexual model with three qualities of patches

We tried to generalize the results of the asexual model to an asexual
model where there are three qualities of patches (Appendix C). Using
Sage software (Sage Foundation, 2009), we found that the singular
point equations (Eq. (C.4)) are satisfied for strategies with dispersal
rates within the interval [0,1] that verify the following system:

X3
j ¼ 1

ϕ1;j d
n

� ��ϕj;1 dn
� �� �¼ X3

j ¼ 1

p1σj;1 Fj�F1
� �

X3
j ¼ 1

ϕ2;j d
n

� ��ϕj;2 dn
� �� �¼ X3

j ¼ 1

p2σj;2 Fj�F2
� �

X3
j ¼ 1

ϕ3;j d
n

� ��ϕj;3 dn
� �� �¼ X3

j ¼ 1

p3σj;3 Fj�F3
� �

; ð20Þ

where σj;i is the proportion of i-patches (iA 1;2;3f g) that become
j-patches after habitat quality variation and ϕj;i dið Þ ¼ Fipipjdi is the
flow of individuals that disperse from i-patches to j-patches before
habitat quality variation (scaled relative to the total number of patches
N). di is the dispersal strategy from i-patches, pi is the proportion of i-
patches, and Fi is the amount of resources available in i-patches.
Moreover, we verified that the solutions of Eq. (20) are the only
singular strategies, by numerically solving Eqs. (C.4) for 10,000 random
parameter sets and checking that the solutions verify Eq. (20). We
were unable to show that the solutions of Eq. (20) are convergent
stable in the general case, neither that they are unstable. However,
assuming that the three dispersal rates evolve without mutational
correlation, we found that dispersal rates satisfying Eq. (20) are indeed
convergent stable (Appendix C).

The left parts of Eq. (20) are the net flows of individuals into a
given patch type due to dispersal at the CS strategies, whereas the
right parts represent the amount of resources created in the same
patch type by habitat quality variation. Eq. (20) is thus the parallel of
Eq. (15) in the case of an environment with three habitat qualities:
again, a dispersal strategy such that the net flow of individuals equals
the flow of resources in each habitat is a CS strategy.

It can be shown that Eq. (20) are equivalent to the following
system:

δ1 dn
� �

δ2 dn
� �¼ p1F1þp1σ2;1 F2�F1ð Þþp1σ3;1 F3�F1ð Þ

p2F2þp2σ1;2 F1�F2ð Þþp2σ3;2 F3�F2ð Þ
δ1 dn
� �

δ3 dn
� �p1F1þp1σ2;1 F2�F1ð Þþp1σ3;1 F3�F1ð Þ

p3F3þp3σ1;3 F1�F3ð Þþp3σ2;3 F2�F3ð Þ
δ2 dn
� �

δ3 dn
� �¼ p2F2þp2σ1;2 F1�F2ð Þþp2σ3;2 F3�F2ð Þ

p3F3þp3σ1;3 F1�F3ð Þþp3σ2;3 F2�F3ð Þ; ð21Þ

where δi dð Þ is the number of individuals (scaled relative to the
total number of patches N) after dispersal and before habitat
quality variation in i-patches:

δi dð Þ ¼ piFi 1�dið Þþ
X3
j ¼ 1

pjFjpidj:

Eq. (21) is thus the parallel of Eq. (12) in the case of an environment
with three habitat qualities. This analysis leads us to conclude that
our main results for the asexual model (Eqs. (12) and (15)) may be
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generalized to environments with more than two qualities of
patches, at least when there is no mutational correlation between
dispersal rates.

4. Discussion

We developed an analytical model to investigate the distribu-
tion of individuals resulting from convergence stable (CS) dispersal
rates in a temporally variable environment. For an organism
reproducing asexually and assuming an environment with two
qualities of patches, we found that CS dispersal rates satisfy two
conditions: (i) the net flow of individuals that disperse into
patches of a given quality before variation of habitat quality equals
the expected amount of resources created in these patches after
environmental variation (Eq. (15)), and (ii) the distribution of
individuals in patches of a given quality before habitat quality
variation matches the expected distribution of resources in these
patches after environmental variation (Eq. (12)). It can also be
demonstrated that reproductive values in different patches are
equal at the CS strategies, fitnesses in different patches as well,
which is also equivalent to equal fitnesses for dispersing and non-
dispersing individuals from each patch (results not shown). It
must be noticed that our CS strategies are not proved to be
evolutionarily stable. However, in a similar model where dispersal
did not depend on habitat quality (dP ¼ dG) Cohen and Levin
(1991) found that the predicted dispersal rates are evolutionarily
stable when comprised in the interval [0,1]. When dispersal is
habitat-dependent as in our study (i.e. dP and dG not necessarily
equal), CS strategies form a continuum of strategies and a poly-
morphism may evolve.

We showed that our results can be generalized to sexually
reproducing organisms following a DDM or DMD life cycle. For the
3-patch model, we were unable to conclude about convergence
stability or instability in the general case. Nevertheless, when
there is no mutational correlation between traits, we demon-
strated that our results can be generalized to an environment with
three qualities of patches.

The classical result that the fitness of dispersers and non-
dispersers are equalized (Slatkin, 1978) is a simple translation of
Eq. (9). That dispersal evolution in a structured population should
tend to equalize reproductive values among patches has also been
consistently reported (McPeek and Holt, 1992; Lemel et al., 1997;
Lebreton et al., 2000; Greenwood-Lee and Taylor, 2001; Holt and
Barfield, 2001; Padrón and Trevisan, 2006). The equalization of
reproductive values can be viewed as the achievement of an ideal
free distribution (Holt and Barfield, 2001; Greenwood-Lee and
Taylor, 2001; Rousset, 2004). A continuum of CS dispersal rates is
obtained here, as usually observed when dispersal is assumed to
be habitat-dependent (McPeek and Holt, 1992; Doebeli, 1995;
Lemel et al., 1997; Lebreton et al., 2000).

The present model describes the evolution of dispersal in an
environment which is temporally variable, following a stationary
Markovian process. At any given time, the environment is spatially
variable because patches differ in their present state, i. e. in their
quality. Patch quality is here defined as the amount of resources
available, determining carrying capacities. However, the environ-
ment may be qualified as spatially homogeneous in the sense that
all patches will experience the different states a constant propor-
tion of time. In a temporally variable environment described as a
stationary Markov chain, like in our model, habitat quality is partly
predictable because the proportion of patches that will change
quality is constant over time. However, the exact quality of a given
patch at the next time step cannot be predicted: quality variation
is a stochastic process that can only be anticipated in expectancy.
These two properties of the model explain the two results at the

CS strategies: (i) resource matching is realized in expectancy before
habitat quality variation, and (ii) the distribution of individuals
undermatches resources after habitat quality changes, i.e. there is a
lack of individuals in the more rewarding patches, and an excess in
the less rewarding patches after habitat quality changes.

Result (i) means that individuals distribute in different patches
before habitat quality variation according to the expected distribu-
tion of resources available in these patches after habitat quality
variation (Eq. (12)). This result is reminiscent of the resource
matching rule (Parker, 1978; Recer et al., 1987). Temporally
variable environments have been the object of few experiments
in the test of the ideal free distribution theory, but Recer et al.
(1987) examined the effect of varying resource input rates on the
distribution of mallards between two patches. In their experi-
mental setting, when resource supply rate was varied rapidly
enough, individuals could no longer track the variation of the
environment, settled in one patch, and their distribution was
matching the mean input rates in different patches. In our model,
we also find that individuals distribute themselves before habitat
quality variation by averaging future available resources.

Result (ii) is due to the fact that individuals have partial
information about habitat quality: they cannot know whether a
given patch will change quality, so they distribute at random
between patches of the same present quality though differing in
their future quality. This is analogous to perception limits: with
perception limits, foraging individuals get imprecise information
about the suitability of different patches and undermatching is
observed because some individuals distribute randomly between
patches (Abrahams, 1986; Gray and Kennedy, 1994; Hakoyama and
Iguchi, 1997). The theoretical distribution of individuals in sto-
chastic environments has already been studied (Hakoyama, 2003,
Schreiber, 2012) and undermatching was also found even if
hypotheses differ between these models and ours, as detailed
hereafter.

Contrary to e.g. McPeek and Holt (1992) (as well as Hakoyama,
2003; Schreiber, 2012), the present model is based on temporal
disturbance of patch quality when there is no spatial variation of the
environment: here, all patches are equivalent in the long term. Other
models have already studied the evolution of dispersal in such a
context (Comins et al., 1980; Cohen and Levin, 1991; Olivieri et al.,
1995; Olivieri and Gouyon, 1997; Gandon and Michalakis, 1999) but
they considered that dispersal is not habitat-dependent. Fixing equal
dispersal rates among patches dn

P ¼ dn

G is a special case of our model.
In the case of random patch extinction (FP ¼ 0 and σPP ¼ σPG), our
model gives the same solution as in previous studies: dn

G ¼ 1. Cohen
and Levin (1991) used a Markovian process to model temporal
variation of habitat quality in a metapopulation. In the case when
dispersal is costless and when there are two qualities of habi-
tat, we find the same solution as Cohen and Levin (1991):
dn

P ¼ dn

G ¼ σ= 2g 1�gð Þð Þ. The CS dispersal rate thus only depends on
the statistical structure of the environment (σ and g), and not on
resources FP and FG. As in previous models, we make the strong
assumption that habitat quality change (σ or σi;j) is constant over
time, as well as the proportion of different patch types (g or pi). The
effects of relaxing this assumption should depend on individual
cases, and no general prediction can be made.

Dispersal may be decomposed in three successive steps: emigra-
tion, movement and immigration (Bowler and Benton, 2005; Clobert
et al., 2009). Considering emigration, our model assumes that
dispersal is habitat-dependent. Habitat quality here determines
how many individuals may establish in one patch. In this case,
habitat quality may be perceived as the local intensity of competition
between individuals for establishment. Our model may also describe
the case when the number of individuals per patch is the same in all
patches and individuals must share resources. In this case, FG and FP
represent the amount of resources available to one individual that
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linearly determines its fecundity. Habitat quality may here be
perceived as the amount of resources available to an individual or
its condition before dispersal and mating.

Concerning movement between patches, our model assumes
that dispersal is cost-free. Cost-free dispersal allows a straightfor-
ward interpretation of our analytical results in terms of distribu-
tion or flow of individuals in different patches. However this
assumption may prove inadequate in many real situations where
mortality occurs during movement or dispersers are less compe-
titive (Ronce, 2007). When the assumption of cost-free dispersal is
relaxed in our two patch asexual model, the CS dispersal rate from
poor patches should always be nil (dP ¼ 0), since this limits the
overall costs. Whether there is dispersal from good patches should
depend on the relative values of the cost of dispersal and the ratio
in resources F , i.e. whether the benefit in resources available to
dispersers is high enough to compensate for the cost of dispersal.

Immigration is random in our model because dispersing indivi-
duals have the same probability to settle in any patch. If dispersers
select habitat, i.e. prefer to establish in one kind of patches, the
distribution and flow of individuals at CS strategies should be
unchanged, compared to the situation without habitat selection.
Hence, dispersal rates from good and poor patches should be
modified to satisfy Eqs. (12) and (15). Habitat selection has thus
the potential to modify CS dispersal rates.

Compared to the dispersal strategies examined in the present
study, a superior strategy is to delay dispersal after habitat quality
variation. Indeed, delaying dispersal allows to assess future patch
quality before deciding to leave or not (informed dispersal; Clobert
et al., 2009). If investigators also sample habitat quality after environ-
mental variation, this may explain why a majority of studies report
dispersal from low-quality/high-density habitats toward good-quality/
low-density habitats (Bowler and Benton, 2005). Delayed dispersal,
coupled with habitat selection, even has the potential to result in
resource matching if information can be gathered about the suitability
and occupancy of different patches before settling (Clobert et al.,
2009). In our model, dispersal occurs before variation of habitat
quality, a strategy that results in undermatching but that may still
be selected for in short-lived species when time constraints dictate to
disperse at an early stage (e.g., insects; McCauley, 1989).

Provided that the CS strategies we found are also evolutionarily
stable, the model makes additional predictions. At first, dispersal
rates should increase when habitat disturbance increases (Fig. 1). This
is in agreement with observations showing that species occupying
disturbed habitats and early successional stages often have very good
dispersal mechanisms (Pickett and Thompson, 1978; Washburn and
Cornell, 1981; Levin et al., 1984; Wissinger, 1997). Concerning the
values of CS dispersal rates, the model's predictions are not clear-cut
because a family of co-existing CS strategies is found: only the
distribution and flow of individuals at the CS strategies are unique.
Complicating further the picture, dispersal may be higher from good
or from poor habitats, depending on the values of parameters F , g
and σ. Testing the predictions of the model may therefore prove
tricky in the absence of a controlled experimental setting. Measuring
the distribution of short generation time organisms in an experiment
that varies the environment temporally is more likely to bring the
appropriate information.

Disturbance and succession are ubiquitous landscape features.
Natural exogenous disturbance, subsequent succession, or habitat-
use by man all affect the compositions of vegetable and animal
assemblages (Heinselman, 1973; Schowalter, 1985). Forests or
shrublands are modeled by fire, wind and water motion
(Christensen 1985). Forests are also exploited for wood through
logging activity. Cultivated fields are ephemeral and disturbed
habitats, varying in habitat quality with crop type and crop growth
(Thorbek and Topping 2005; Benvenuti, 2007). Patterns of succes-
sion can also be found in marine ecosystems (Huston and Smith,

1987). Such processes, either stochastic or deterministic, some-
times have the properties of a Markov chain (Wagooner and
Stephens 1970; Horn, 1975; Olivieri et al., 1995; Valverde and
Silvertown, 1997). In this context, dispersal may evolve in a way
similar to that described in our model. Among insects, for
example, frequent changes in land use modify habitat quality in
milkweed beetle populations, independently from the age of these
populations (McCauley, 1989). Forked fungus beetles live in con-
nected populations around logs appropriate for fungal growth that
slowly decompose and lose their suitability (Whitlock, 1992).
Concerning dispersal strategy, the rodents Microtus pennsylvanicus
live in ephemeral early successional patches of vegetation and
massive emigration can be observed from populations while the
habitat is still capable of supporting a large number of mice
(Christian, 1970), a behavior that may be expected from our model.

One may also wonder whether the present model can predict
the behavior of foraging animals in a temporally variable environ-
ment. Because reproductive values in different patches are equal at
the CS strategies, the distribution of individuals in our model
seems only driven by the availability of resources at any genera-
tion. However, because in a stationary Markov chain all patches
spend the same proportion of time in different states, averaging
resources over time should lead individuals to distribute equally
among the different patches. The specificity in our model is that
individuals are free to disperse between two time steps, enabling
them to anticipate the variation of resources. We do not know of
an experiment studying the distribution of individuals in such a
context. Implementing a Markovian process for resources input
while allowing for dispersal may thus give valuable information
concerning the ability of animals to learn the pattern of variation
and anticipate the distribution of resources.
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Appendix A. Proofs of the results for the asexual model

A.1. Model analysis

We computed a simplified analytical expression of the fitness
function W vo; vð Þ with variables v¼ dP; að Þ and vo where a¼ FGdG
�FPdP using Mathematica (Wolfram, 2008). Then, we computed
the selection measures (Eq. (8)); we found that SP vð Þ ¼ 0 whatever
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parameters values and whatever variables values. This means
that, after changing variables dP; dGð Þ to dP; að Þ, the dimension
along dP can be considered as selectively neutral. Consequently,
Eq. (9) becomes SA vnð Þ ¼ 0, and solving it leads to an ¼ σ FG�FPð Þð Þ=
2g 1ðð �gÞÞ. There is thus an infinite number of singular strategies
which can be written as vn ¼ dn

P; a
n ¼ σ FG�FPð Þ= 2g 1�gð Þð Þ� �

where
dn

P is not subject to selection and hence can take any value
within [0,1].

As explained in Section 2.2.3, the trait under selection of any of
the singular strategies, an, is convergent stable if the eigenvalue of
the matrix AJn (where Jn is the Jacobian matrix of the selection
gradient evaluated at the singular strategy and A is the mutational
matrix) corresponding to this trait is negative. The Jacobian of our
system evaluated at any of the singular strategies vn reads

Jn ¼ 0 0
0 λ

� �
where λ is a negative term. For any mutational

matrix A¼
α11 α12
α21 α22

 !
, the product AJn equals

0 α12λ

0 α22λ

 !
. Its

eigenvalues are 0 and α22λ. The non-zero eigenvalue corresponds
to the evolution of the trait a, i.e. the trait under selection and is
negative (because α22 is a mutation rate, a positive term). There-
fore any strategy an is convergent stable in the sense of Lyapunov
(Section 2.2.3; Leimar, 2009). The other trait, dP, is not subject to
selection so that we do not expect its convergence to a specific
value. Finally, any singular strategy vn ¼ �dn

P; a
n ¼ σ FG�FPð Þ=

2g 1�gð Þð Þ�, where dn

P can take any value within [0,1], is thus lo-
cally convergent stable.

Note that because dP can change neutrally and a in fact depends
on dP (a¼ FGdG�FPdP), we expect a to converge to any value such
that a¼ an; we do not expect dP to converge to a specific value
along the “line” a¼ an. The term dP can also change while a
converges to an because of mutational correlations between the
two traits (term α12λ in matrix AJn above).

For the biological interpretation of the results, it is helpful to
come back to the original variable d¼ dP; dGð Þ: locally conver-
gent stable singular strategies are the vectors dn ¼ ðdn

P; d
n

GÞ such
that FGd

n

G�FPd
n

P ¼ σ FG�FPð Þð Þ= 2g 1�gð Þð Þ, with dispersal rates wi-
thin the interval [0,1].

The selection Hessian matrix of our system evaluated at any
singular strategy, Hn, equals the zero matrix whatever parameter
values. This does not allow us to conclude about evolutionarily
stability or instability (Section 2.2.3). Given that the CS strategies
we find form a continuum of strategies, a polymorphism of
dispersal strategies may evolve once a CS strategy has been
reached.

A.2. Undermatching after habitat quality change

Let us define ΔJI dð Þ as the number of individuals (scaled relative
to the total number of patches N) after dispersal and habitat
quality variation in J-patches, formerly I-patches:

ΔJI dð Þ ¼ σJIδI dð Þ

with σJI and δI dð Þ defined by Eqs. (4) and (11) respectively. Let us
define F JI as the amount of resources (scaled relative to the total
number of patches N) in J-patches, formerly I-patches:

FGG ¼ FG g�σ

2

� �

FPG ¼ FP
σ

2

FGP ¼ FG
σ

2

FPG ¼ FP 1�g�σ

2

� �
:

After simplification,

ΔGG dð Þ
FGG

¼ δG dð Þ
gFG

ΔPG dð Þ
FPG

¼ δG dð Þ
gFP

ΔGP dð Þ
FGP

¼ δP dð Þ
1�gð ÞFG

ΔPP dð Þ
FPP

¼ δP dð Þ
1�gð ÞFP

:

At the CS strategies,

δG dn
� �¼ gFG�

σ

2
FG�FPð Þ

δP dn
� �¼ 1�gð ÞFPþ

σ

2
FG�FPð Þ:

When 0oσo1, because σ=2og and σ=2o 1�gð Þ, it comes that:

ΔGG dn
� �

FGG
o1

ΔPG dn
� �

FPG
41

ΔGP dn
� �

FGP
o1

ΔPP dn
� �
FPP

41:

Thus, the distribution of individuals after habitat quality change
undermatches the distribution of resources. However, for σ ¼ 0 (no
variation of habitat quality),

ΔGG dn
� �

FGG
¼ 1 and

ΔPP dn
� �
FPP

¼ 1

and for σ ¼ 2g¼ 2 1�gð Þ, which implies that g ¼ 1=2 and σ ¼ 1 (the
quality of all patches changes),

ΔPG dn
� �

FPG
¼ 1 and

ΔGP dn
� �

FGP
¼ 1:

In these two special cases, when environmental change is per-
fectly predictable, the distribution of individuals after habitat
quality change matches the distribution of resources.

Appendix B. Sexual models

B.1. Models writing and analysis

For the DDM model, only males and females disperse.
A dispersal strategy thus consists of a vector d¼ dfP; dfG; dmP;

�
dmGÞ. For the DMD model, only males and zygotes disperse. A
dispersal strategy thus consists of a vector d¼ dmP;ð dmG; dzP; dzGÞ.

For both sexual models, let W I do; d
� �

be the fitness of an I-class
focal individual with strategy do in a resident population with
strategy d. Recall that the fitness is defined as the expected
number of gene copies transmitted to the next generation by the
focal individual. As for the asexual model, we can write the fitness
of an I-class individual as

W I do; d
� �¼ VPWPI do; d

� �þVGWGI do; d
� �

where V I is defined by Eq. (7). We then split the expected number
of gene copies that an I-class focal individual produces in a
L-patch, WLI do; d

� �
, into a female and a male term:

WLI do;d
� �¼Wf

LI do; d
� �þWm

LI do; d
� �

:

Let Pf
JI do
� �

be the probability that an I-class female will be
fertilized in a J-patch, and ZLJ do; d

� �
the probability that a zygote

produced in a J-patch will be a L-class reproducing individual in
the next generation. As a female can be fertilized either in a G- or
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in a P-patch, and because each gene copy is transmitted to a
female gamete with probability 1/2, we can write

Wf
LI do; d
� �¼ 1

2
ZLP do; d
� �

Pf
PI do
� �þZLG do; d

� �
Pf
GI do
� �� �

:

With the same reasoning as that used to obtain Eq. (5),
we express Pf

JI do
� �

terms:

Pf
PP do
� �¼ 1�dofPþ 1�gð ÞdofP

Pf
PG do
� �¼ 1�gð ÞdofG

Pf
GP do
� �¼ gdofP

Pf
GG do
� �¼ 1�dofGþgdofG: ðB:1Þ

The competition between zygotes depends on the quality of
their habitat, therefore

ZLJ do; d
� �¼ ZLPJ do; d

� �þZLGJ do; d
� �

:

A zygote produced in a J-patch becomes a reproducing individual
in a L-patch which was a K-patch before habitat quality variation if
(i) this zygote disperses from its J-patch to a K-patch (and/or stay if
J¼ K) (probability Pz

KJ do
� �

), and (ii) the K-patch becomes a L-patch
because of habitat quality variation (probability σLK, Eq. (4)), and
(iii) the zygote, now in a L-patch, formerly K-patch, survives
density regulation to become a reproducing individual for the
next generation (probability Pc

LK dð Þ):
ZLKJ do; d

� �¼ Pz
KJ do
� �

σLKP
c
LK dð Þ:

The zygote dispersal term Pz
KJ do
� �

is expressed similarly to the
female dispersal term:

Pz
PP do
� �¼ 1�dozPþ 1�gð ÞdozP

Pz
PG do
� �¼ 1�gð ÞdozG

Pz
GP do
� �¼ gdozP

Pz
GG do
� �¼ 1�dozGþgdozG: ðB:2Þ
The competition term Pc

LK dð Þ is the ratio of the number of
sexually mature individuals that all L-patches, formerly K-patches,
can carry, over the number of zygotes that are produced in these
patches. Recall that we assume the number of males is large
enough to fertilize all females while the number of females is
limiting. The number of zygotes produced is thus equal to the
number of females. Let ζK dð Þ be the amount of females in all
K-patches after female dispersal. Then, the competition terms are

Pc
PP dð Þ ¼ N 1�gð ÞσPPFP

ζG dð ÞPz
PG dð ÞσPPþζP dð ÞPz

PP dð ÞσPP
Pc
PG dð Þ ¼ NgσPGFP

ζG dð ÞPz
GG dð ÞσPGþζP dð ÞPz

GP dð ÞσPG
Pc
GP dð Þ ¼ N 1�gð ÞσGPFG

ζG dð ÞPz
PG dð ÞσGPþζP dð ÞPz

PP dð ÞσGP
Pc
GG dð Þ ¼ NgσGGFG

ζG dð ÞPz
GG dð ÞσGGþζP dð ÞPz

GP dð ÞσGG
where ζK dð Þ is expressed by

ζK dð Þ ¼NGP
f
KG dð ÞþNPP

f
KP dð Þ

with NI defined by Eq. (6).
Let us now determine the male fitness termWm

LI do;d
� �

. We define
Pm
JI do
� �

as the probability that an I-class male is in a J-patch after
dispersal and μJ dð Þ as the amount of males in J-patches after dispersal.
Consequently, Pm

JI do
� �

ζJ dð Þ=μJ dð Þ is the probability that an I-class male
will fertilize a female in a J-patch. The same decomposition as for the
female fitness leads to the following expression of the male fitness:

Wm
LI do; d
� �¼ 1

2
ZLP do; d
� �

Pm
PI do
� �ζP dð Þ

μP dð ÞþZLG do; d
� �

Pm
GI do
� �ζG dð Þ

μG dð Þ

� �

This expression assumes that the dispersal rate dzI of zygotes is
determined by the genotype of both parents. Assuming that it is

determined by the genotype of the female parent only (whichmay be
more relevant for the DMD life cycle as it should mimic a plant life
cycle), the terms ZLJ do; d

� �
are to be replaced by ZLJ d;dð Þ. Using this

different assumption does not change any of our results and conclu-
sions (not shown).

The term Pm
JI do
� �

is expressed similarly to female and zygote
dispersal

Pm
PP do
� �¼ 1�domPþ 1�gð ÞdomP

Pm
PG do
� �¼ 1�gð ÞdomG

Pm
GP do
� �¼ gdomP

Pm
GG do
� �¼ 1�domGþgdomG ðB:3Þ

and the term μJ dð Þ similarly to ζJ dð Þ:
μJ dð Þ ¼NGP

m
JG dð ÞþNPP

m
JP dð Þ:

Combining the equations of this section and computing the
reproductive values with Eq. (7) allows to express the fitness of an
I-class individual with the four parameters of the model (FP, FG, g
and σ) and the two variables (do and d).

For both DDM and DMD models, let us define δfI dð Þ and δmI dð Þ as
the expected number of gene copies transmitted in I-patches via
females and males respectively, after zygote dispersal and before
habitat quality variation (scaled relative to the total number of
patches N). Because zygotes are produced in number equal to the
number of females, and each zygote carries one gene copy from
each of its female and male parent:

δfI dð Þ ¼ δmI dð Þ ¼ ζGP
z
IG dð ÞþζPP

z
IP dð Þ:

We define ϕf
JI dð Þ and ϕm

JI dð Þ as the flow of gene copies trans-
mitted from I-patches to J-patches before habitat quality variation
via females and males respectively (scaled relative to the total
number of patches):

ϕf
PG dð Þ ¼ gFG Pz

PG dð ÞPf
GG dð ÞþPz

PP dð ÞPf
PG dð Þ

� �
ϕf
GP dð Þ ¼ 1�gð ÞFP Pz

GG dð ÞPf
GP dð ÞþPz

GP dð ÞPf
PP dð Þ

� �
ϕm
PG dð Þ ¼ gFG Pz

PG dð ÞPm
GG dð ÞζG dð Þ

μG dð ÞþPz
PP dð ÞPm

PG dð ÞζP dð Þ
μP dð Þ

� �

ϕm
GP dð Þ ¼ 1�gð ÞFP Pz

GG dð ÞPm
GP dð ÞζG dð Þ

μG dð ÞþPz
GP dð ÞPm

PP dð ÞζP dð Þ
μP dð Þ

� �
:

For the DDM model, zygotes do not disperse (dozI ¼ dzI ¼ 0).
Similarly to the asexual 2-patch model (see Section 2.2.3), it is
helpful to analyze the model using alternative variables: we now
write the fitness as a function of the vectors v¼ ðdfP; dmP; af ; amÞ
and vo where af ¼ FGdfG�FPdfP and am ¼ FGdmG�FPdmP. Selection
measures are then defined as

SfP vð Þ ¼ ∂W vo; vð Þ
∂dofP

j vo ¼ v

SmP vð Þ ¼ ∂W vo; vð Þ
∂domP

j vo ¼ v

SfA vð Þ ¼ ∂W vo; vð Þ
∂aof

j vo ¼ v

SmA vð Þ ¼ ∂W vo; vð Þ
∂aom

j vo ¼ v:

These probabilities vanish at singular points, i.e. CS strategies vn

necessarily satisfy:

SfP vn
� �¼ 0; SmP vn

� �¼ 0; SfA vn
� �¼ 0; SmA vn

� �¼ 0: ðB:4Þ
For the DMD model, females do not disperse (dof I ¼ df I ¼ 0), and it

is again helpful to analyze the model using alternative variables: we
now write the fitness as a function of the vectors v¼ ðdzP; dmP; az; amÞ
and vo where az ¼ FGdzG�FPdzP. Selection measures are then
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defined as

SzP vð Þ ¼ ∂W vo; vð Þ
∂dozP

j vo ¼ v

SmP vð Þ ¼ ∂W vo; vð Þ
∂domP

j vo ¼ v

SzA vð Þ ¼ ∂W vo; vð Þ
∂aoz

j vo ¼ v

SmA vð Þ ¼ ∂W vo; vð Þ
∂aom

j vo ¼ v:

These probabilities vanish at singular points, i.e. CS strategies vn

necessarily satisfy:

SzP vn
� �¼ 0; SmP vn

� �¼ 0; SzA vn
� �¼ 0; SmA vn

� �¼ 0:: ðB:5Þ
We determined convergence stability of singular strategies as done

with the asexual 2-patch model (see Section 2.2.3 and Appendix A.1).
Specifically, the local dynamics of trait evolution around a singular
strategy vn is described by dðv�vnÞ=dt ¼ AJnðv�vnÞ where A is the
mutational matrix. We show (Appendix B.2) that (i) after changing the
variables of the models, some of the traits can be considered as
selectively neutral, and (ii) the product AJn is a semi-negative definite
matrix, the non-zero eigenvalues of which corresponding to the traits
under selection. This allows us to conclude that the traits under
selection of the singular strategies are convergent stable in the sense
of Lyapunov (Leimar, 2009). The other traits can change neutrally and/
or evolve following genetic correlations between the different traits,
but they do not converge to a specific value. For both sexual models,
the matrix Jn is not simple and wewere not able to determine the sign
of each element. We thus computed the product AJn numerically. To
do so, we generated 10,000 random singular strategies (with dispersal
rates within [0,1]), with parameters drawn in uniform distributions: g
drawn in �0;1½, FG drawn in �1;10�, FP drawn in 1; FG½½ , and σ drawn in
�0; min 2g;2 1�gð Þð Þ½. For the mutational matrix, we generated ran-
dom positive definite matrices using the Wishart distribution with
2 degrees of freedom.

According to Leimar (2009), a sufficient condition for conver-
gent stable strategies to be evolutionarily stable is that the Hessian
matrix evaluated at the singular strategy, Hn, is negative definite.
We show (Appendix B.2) that in our sexual models, Hn equals the
zero matrix, which does not allow us to conclude about evolutio-
narily stability nor instability.

B.2. Proofs of the results for the sexual models

B.2.1. DDM model
We computed a simplified analytical expression of the fitness

function W vo; vð Þ with variables v¼ dfP; dmP; af ; am
� �

and vo where
af ¼ FGdfG�FPdfP and am ¼ FGdmG�FPdmP using Mathematica
(Wolfram, 2008). Then, we computed the selectionmeasures; we found
that SfP vð Þ ¼ 0 and SmP vð Þ ¼ 0 whatever parameters values and what-
ever variables values. This means that, after changing variables
dfP; dmP; dfG; dmG
� �

to dfP; dmP; af ; am
� �

, the dimensions along dfP and
dmP can be considered as selectively neutral. Consequently, Eq. (B.4)

becomes
SfA vnð Þ ¼ 0
SmA vnð Þ ¼ 0

(
, and solving it leads to

an

f ¼
σ FG�FPð Þ
2g 1�gð Þ

an
m ¼ σ FG�FPð Þ

2g 1�gð Þ

8>>><
>>>:

.

There is thus an infinite number of singular strategies which
can be written as vn ¼ �dn

fP; d
n

mP; a
n

f ¼ σ FG�FPð Þ= 2g 1�gð Þð Þ; an
m ¼

σ FG�FPð Þ= 2g 1�gð Þð Þ� where dn

fP and dn

mP are not subject to selection
and hence can take any value within [0,1].

We numerically computed the matrix AJn for 10,000 random
singular strategies (see Appendix B.1). For all random singular
strategies, we found that the eigenvalues of AJn corresponding to

the traits under selection (af and am) are negative. Therefore, the
singular strategies vn ¼ �dn

fP; d
n

mP; a
n

f ¼ σ FG�FPð Þ=ð2g 1�gð ÞÞ; an
m ¼

σ FG�FPð Þ= 2g 1�gð Þð Þ�, where dn

fP and dn

mP can take any value
within [0,1], are locally convergent stable.

For the biological interpretation of the results, it is helpful to
come back to the original variable d¼ dfP; dmP; dfG; dmG

� �
: locally

convergent stable singular strategies are the vectors dn ¼
dn

fP; d
n

mP; d
n

fG;d
n

mG

� �
such that FGd

n

fG�FPd
n

fP ¼ FGd
n

mG�FPd
n

mP ¼
σ FG�FPð Þ= 2g 1�gð Þð Þ, with dispersal rates within the interval [0,1].

The selection Hessian matrix of our system evaluated at any
singular strategy, Hn, equals the zero matrix whatever parameter
values. This does not allow us to conclude about evolutionarily
stability nor instability. Given that the CS strategies we find form a
continuum of strategies, a polymorphism of dispersal strategies
may evolve once a CS strategy has been reached.

B.2.2. DMD model
We computed a simplified analytical expression of the fitness

function W vo; vð Þ with variables v¼ dzP; dmP; az; amð Þ and v1 where
az ¼ FGdzG�FPdzP and am ¼ FGdmG�FPdmP using Mathematica
(Wolfram, 2008). Then, we computed the selection measures; we
found that SzP vð Þ ¼ 0 and SmP vð Þ ¼ 0 whatever parameters values
and whatever variables values. This means that, after changing
variables dzP; dmP;dzG; dmGð Þ to dzP; dmP; az; amð Þ, the dimensions
along dzP and dmP can be considered as selectively neutral.

Consequently, Eq. (B.5) becomes
SzA vnð Þ ¼ 0
SmA vnð Þ ¼ 0

(
, and solving it leads

to an
z ¼ σ FG�ð FPÞ=ð2g 1�gð ÞÞ and an

m ¼ 0. There is thus an infinite
number of singular strategies which can be written as
vn ¼ �dn

zP; d
n

mP; a
n
z ¼ σ FG�ð FPÞ= 2g 1�gð Þð Þ; an

m ¼ 0
�

where dn

zP and

dn

mP are not subject to selection and hence can take any value
within [0,1].

We numerically computed the matrix AJn for 10,000 random
singular strategies (see Appendix B.1). For all random singular
strategies, we found that the eigenvalues of AJn corresponding to
the traits under selection (az and am) are negative. Therefore, the
singular strategies vn ¼ �dn

zP; d
n

mP; a
n
z ¼ σ FG�FPð Þ=ð2g 1�gð ÞÞ; an

m ¼ 0
�
,

where dn

zP and dn

mP can take any value within [0,1], are locally
convergent stable.

For the biological interpretation of the results, it is helpful
to come back to the original variable d¼ dzP;dmP; dzG; dmGð Þ: locally
convergent stable singular strategies are the vectors dn ¼ ðdn

zP;

dn

mP; d
n

zG; d
n

mGÞ such that FGd
n

zG�FPd
n

zP ¼ σ FG�FPð Þ= 2g 1ðð �gÞÞ and
FGd

n

mG�FPd
n

mP ¼ 0, with dispersal rates within the interval [0,1].
As for the previous models, the Hessian selection matrix

evaluated at the singular strategy equals the zero matrix, which
does not allow us to conclude about evolutionarily stability nor
instability. Given that the CS strategies we find form a continuum
of strategies, a polymorphism of dispersal strategies may evolve
once a CS strategy has been reached.

Appendix C. Asexual model with three qualities of patches
(“three-patch model”)

We define the environment as a stationary Markov chain
consisting of three kinds of patches in proportion pi (iA 1;2;3f g).
The amount of resources available in i-patches is Fi. The parameter
σ is no more convenient and we have to solve the system:

p1σ1;1þp1σ2;1þp1σ3;1 ¼ p1σ1;1þp2σ1;2þp3σ1;3

p2σ1;2þp2σ2;2þp2σ3;2 ¼ p1σ2;1þp2σ2;2þp3σ2;3

p3σ1;3þp3σ2;3þp3σ3;3 ¼ p1σ3;1þp2σ3;2þp3σ3;3;
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where σj;i is the proportion of i-patches that become j-patches
after habitat quality variation:

8 iA 1;2;3f g;
X3
j ¼ 1

σj;i ¼ 1:

Then we have the solutions:

8 r1;r2;r3;r4
� �

A 0;1½ �4;

σ2;1 ¼
r1þr3þr4ð Þp2þp1r1�r1

p1

σ3;1 ¼
r1þr2� r1þr2ð Þp1� r1þr2þr3ð Þp2

p1
σ1;2 ¼ r4
σ3;2 ¼ r3
σ1;3 ¼ r2
σ2;3 ¼ r1:

A dispersal strategy consists of three dispersal rates: d¼ d1;d2;d3
� �

.
The fitness Wi d

o; d
� �

of an i-class individual (iA 1;2;3f g ) is now
expressed as

Wi d
o; d

� �¼ X3
k ¼ 1

VkWk;i d
o; d

� �
: ðC:1Þ

where Wk;i d
o; d

� �
is the expected number of offspring that an i-

class focal individual produces in a k-patch, and Vi is the
asymptotic contribution of an individual born in a i-patch to the
future gene pool of the population. The vector of the individual
reproductive values V1;V2;V3ð Þ is now defined as

V1;V2;V3
� � W1;1 d; dð Þ W1;2 d; dð Þ W1;3 d; dð Þ

W2;1 d; dð Þ W2;2 d; dð Þ W2;3 d; dð Þ
W3;1 d; dð Þ W3;2 d; dð Þ W3;3 d; dð Þ

2
64

3
75¼ V1;V2;V3

� �

with

X3
i ¼ 1

QiVi ¼ 1

where Qi is the proportion of i-class individuals:

Qi ¼
piFiP3

j ¼ 1
pjFj

:

The fitness function can be expressed as

W do; d
� �¼ X3

i ¼ 1

QiWi d
o; d

� �
: ðC:2Þ

To produce offspring in a k-patch, an i-class focal individual
may disperse to a j-patch (jA 1;2;3f g) which becomes a k-patch
after habitat quality variation or not disperse from a i-patch which
becomes a k-patch after habitat quality variation. Thus we can
write:

Wk;i d
o; d

� �¼ 1�doi
� �

σk;iAk;i dð Þþdoi
X3
j ¼ 1

pjσk;jAk;j dð Þ ðC:3Þ

Ak;i dð Þ is the ratio of the amount of resources in k-patches, formerly
i-patches, over the number of individuals reproducing in these
patches:

Ak;i dð Þ ¼ FkNpiσk;i

Ni 1�dið Þσk;iþpiσk;i
P3
j ¼ 1

Njdj

:

Combining the equations of this section allows to express the
fitness function of an i-class individual with the parameters of the
model (Fi, pi and σj;i) and the two variables (do and d).

Selection measures are defined by

S1 dð Þ ¼ ∂W do; d
� �
∂do1

j do ¼ d

S2 dð Þ ¼ ∂W do; d
� �
∂do2

j do ¼ d

S3 dð Þ ¼ ∂W do; d
� �
∂do3

j do ¼ d:

These probabilities vanish at singular points, i.e. CS strategies dn

necessarily satisfy:

S1 dn
� �¼ 0

S2 dn
� �¼ 0

S3 dn
� �¼ 0: ðC:4Þ

After changing the variables of the model similarly to what we did
for the other models, we found that the Jacobian matrix Jn of
the selection gradient evaluated at any of the singular strategies
(Eq. (20)) equals the zero matrix. Therefore, we cannot concl-
ude about convergence stability or instability of these strategies.
However, assuming that there is no mutational correlation bet-
ween dispersal rates, singular strategies are convergent stable if
the following relation is satisfied:

∂S1 dð Þ
∂d1

j d ¼ dn o0

∂S2 dð Þ
∂d2

j d ¼ dn o0

∂S3 dð Þ
∂d3

j d ¼ dn o0: ðC:5Þ

We numerically verified that these inequalities are verified for
candidate CS strategies (dispersal rates satisfying Eq. (20)) with
the same method as in Appendix B.2.1 for the DDM model. For all
strategies tested, we found that Eq. (C.5) is verified. We concluded
that dispersal rates satisfying Eq. (20) are convergent stable
dispersal strategies, at least when there is no mutational correla-
tion between dispersal rates.
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