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Summary

1. Estimating heritability of traits in wild populations is amajor prerequisite to understand their evolution. Until

recently, most heritability estimates had been obtained using parent-offspring regressions. However, the popular-

ity of animal models, that is, (generalized) linear mixed models assessing the genetic variance component based

on population pedigree information, has markedly increased in the past few years. Animal models are claimed to

perform better than parent–offspring regressions mainly because they use full between-individual relatedness

information and they allow explicit modelling of the environmental effects shared by individuals. However, the

differences between heritability estimates obtained using both approaches are not straight forward, and the fac-

tors influencing these differences remain unclear.

2. We performed a simulation study to evaluate and compare the accuracy and precision of estimates obtained

from parent–offspring regressions and animal models using both Frequentist (REML, PQL) and Bayesian

(MCMC) estimation methods. We explored the influence of (i) the presence and type of shared environmental

effects (non-transgenerational or transgenerational), (ii) the distribution of the phenotypic trait considered

(Gaussian or binary trait) and (iii) data quantity and quality (sample size, pedigree connectivity) on heritability

estimates obtained from the two approaches for different levels of true heritability.

3. In the absence of shared environmental effects, the animal model using theREMLmethod performed best for

aGaussian trait, while the animalmodel usingMCMCwasmore appropriate for a binary trait. For low quantity

and quality data, and a binary trait, the parent–offspring regression yielded very imprecise estimates.

4. Estimates from the parent–offspring regression were not influenced by a non-transgenerational shared envi-

ronmental effect, whereas estimates from animalmodels in which environmental effects are ignored were affected

by both non-transgenerational and transgenerational effects.

5. We discuss the relevance of each approach and estimation method for estimating heritability in wild popula-

tions. Importantly, because most effects fitted in animal models are, in fact, non-transgenerational (including

environmental maternal effects), we advocate a systematic comparison between parent–offspring regression and

animal model estimates to detect potentiallymissing non-transgenerational environmental effects.

Key-words: Quantitative genetics < PopulationGenetics, Bayesianmethods < Statistics, Statistics

Introduction

Natural selection is acting solely on individuals’ phenotype,

whereas individuals mainly pass on genotypes to their off-

spring. Understanding how genotype shapes phenotype is

therefore an essential issue to understand evolution in nature

(Ridley 2003). Quantitative genetics is a powerful framework

to explore the complex genetic architecture of phenotypic traits

(Kruuk, Slate & Pemberton 2008). In wild populations, how

much of the observed phenotypic variation on a trait can be

transmitted to the next generations is a frequently asked

question because it affects the speed and magnitude of trait

evolution. The fraction of variability in the phenotypic trait

that is of transmittable genetic origin is called heritability

(Falconer & Mackay 1996; Roff 1997; Lynch & Walsh 1998).

Because heritability is a key genetic parameter in regard to

whether natural selection is able to generate evolution on a

trait or not, it has been the focus of many studies in various

species (Mousseau & Roff 1987; Falconer & Mackay 1996;

Kruuk 2004; Roffn, 2007;Hill &Kirkpatrick 2010).*Correspondence author. E-mail: bonamy@horus.ens.fr
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Until recently, two approaches were available and classically

used to estimate heritability in wild populations: half-sibling

design and parent–offspring regression (Falconer & Mackay

1996; Roff 1997). The half-sibling design method operates by

comparing intra- and inter-family variance for half-sibs (the

full-sibling design is to be avoided because of its sensitivity to

dominance effects, see Lynch & Walsh 1998). In the parent–

offspring regression method, the heritability (resp. half of the

heritability) of a trait is given by the slope of the regression

between the mid-parent phenotype (resp. the phenotypes of

one of the parents) and the mean offspring phenotype. Advan-

tages and disadvantages of these two methods are well known

and reviewed in Falconer & Mackay (1996), Roff (1997) and

Lynch & Walsh (1998). The parent–offspring regression has

been more frequently used than the half-sibling design in the

wild because it is easier to set up and requires less offspring per

individual (Roff 1997) and less information about family

structure (e.g. molecularly assigned paternities). In wild popu-

lations, the presence of environmental effects shared by related

individuals (Wilson et al. 2010) and issues related to data qual-

ity (Quinn et al. 2006; Postma & Charmantier 2007), misas-

signed paternities (Charmantier & R�eale 2005) or imperfect

detection (Cam 2009; Papaı̈x et al. 2010) can, however, gener-

ate biases or decrease statistical power when estimating herita-

bility. The estimation of heritability in wild populations

therefore requires accounting for these specificities, in

particular unbalanced sampling designs (Kruuk 2004). Over

the last decade, an increasing number of studies (e.g. R�eale,

Festa-Bianchet & Jorgenson 1999; Milner et al. 2000; Meril€a,

Kruuk & Sheldon 2001; Kruuk, Meril€a, Sheldon 2001, Kruuk

et al. 2002; Sheldon, Kruuk & Meril€a 2003; McCleery et al.

2004; Charmantier, Keyser & Promislow 2007; Nilsson, �Akes-

son & Nilsson 2009; Morales et al. 2010; Lane et al. 2011)

have estimated the heritability of traits in the wild using the

animal model approach (Kruuk 2004; Postma & Charmantier

2007; Visscher, Hill & Wray 2008). This model was developed

in the 1950s (e.gHenderson, 1950, 1976) for animal (and plant)

breeding studies, from which it owes its name. The animal

model is a (possibly generalized) linearmixedmodel that uses a

pedigree of the population to estimate the additive genetic vari-

ance component (and potentially other kinds of genetic

effects). The advantages of this approach over the parent–

offspring regression and half-sibling design are twofold. First,

the animal model is not restricted to specific types of relation-

ships between individuals. Therefore, it maximizes statistical

power (Sorensen & Kennedy 1984; Kruuk 2004) and is more

robust to inbreeding and selection (Sorensen &Kennedy 1984;

van derWerf & de Boer 1990; Sillanp€a€a 2011). Second, the ani-

mal model can explicitly account for many confounding effects

such as dominance, common environment and parental iden-

tity (Kruuk 2004; Wilson et al. 2010). Because of its flexibility

when dealing with such unbalanced sampling design, the ani-

mal model approach has been strongly promoted for estimat-

ing heritability of traits in wild populations (Kruuk 2004;

Postma & Charmantier 2007; Wilson et al. 2010). However,

animal models also suffer from the classical pitfalls of mixed

models, which are notoriously computationally demanding

and sometimes difficult to handle correctly (Bolker et al. 2009;

Zuur et al. 2009).

As a practical demonstration of the advantages of the ani-

mal model over the parent–offspring regression, Kruuk

(2004) reviewed heritability estimates obtained with both

methods in wild populations. She showed that parent–

offspring regression estimates were on average 30% higher

than those from animal models. Yet, this comparison was

criticized by �Akesson et al. (2008) who argued that the data

sets were too different for the estimates obtained with both

methods in different studies to be comparable. Indeed, when

restricting to the four studies comparing parent–offspring

regressions and animal models for the same data sets, yielding

22 different heritability estimates (R�eale, Festa-Bianchet &

Jorgenson 1999; MacColl & Hatchwell 2003; �Akesson et al.

2008; Hadfield et al. 2006), we could find no bias anymore:

the heritability estimate was higher for the animal model than

for the parent–offspring regression in 13 cases, and lower in

eight cases (see Table 1). In a simulation study, in which

related individuals shared an environmental effect, Kruuk &

Hadfield (2007) showed that the parent–offspring regression

performed better in estimating heritability than an animal

model in which this environmental effect had not been speci-

fied, that is, a ‘naive’ animal model, and almost as well as an

animal model incorporating this effect, that is, an ‘informed

animal’ model. These results may be due to the simulation by

the authors of a ‘non-transgenerational’ environmental effect

shared by related individuals (Rossiter, 1996). These non-

transgenerational effects are shared by related individuals

within the same generation only (e.g. sibs). By contrast, trans-

generational effects, that is, effects shared by related individu-

als between generations (e.g. parents and their offspring),

increase the resemblance between parent and offspring and

may thus artificially inflate heritability estimates given by par-

ent–offspring regressions. In other words, parent–offspring

regressions are expected to give higher estimates than animal

models only in the presence of transgenerational environmen-

tal effects if relevant information is provided to the animal

model (i.e. additional random effect(s) in the model). When

referring to a transgenerational effect here, we will exclusively

consider parents and their offspring, excluding other potential

levels of relatedness between individuals (e.g. for grand-

maternal effects), which have not been commonly investigated

in wild populations using animal models so far.

The previous reasoning is valid for any kind of data

distribution. Yet, new difficulties arise when using non-Gauss-

ian distribution, especially for all-or-none (i.e. binary) data, as

standard methods become irrelevant, because of intrinsic nor-

mality assumptions (e.g. classical parent–offspring regression)

or issues in likelihood computation (e.g. REML). To relax

normality assumptions, methods based on threshold models

are used (Wright, 1934; Dempster & Lerner1950; Elston, Hill

& Smith 1977; Gianola, 1982; Lynch & Walsh, 1998). These

models assume an underlying continuous character and a

threshold value triggering the presence of the all-or-none trait.

The statistical properties of parent–offspring regressions using

thresholdmodels are well understood (vanVleck, 1972; Elston,
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Hill & Smith 1977; Lynch &Walsh, 1998; Roff, 1997). On the

contrary, the behaviour of some estimation methods based on

animal models needs further investigation for binary data (e.g.

Charmantier, Keyser & Promislow 2007). For instance,

Charmantier et al. (2011) obtained contradictory results on

the heritability of natal dispersal behaviour in the wandering

albatross when comparing a parent–offspring regression and

an animal model and between different estimation methods

used to fit the animal model. Numerous studies of heritability

of binary traits in the wild have been published using only par-

ent–offspring regression (Hansson, Bensch & Hasselquist

2003; Doligez, Gustafsson & P€art 2009), animal model

(Th�eriault et al. 2007; Wilson et al. 2011; Reid et al. 2011a, b)

or both approaches (Charmantier, Keyser & Promislow 2007;

Doligez et al. 2012; Charmantier et al. 2011). Yet, despite the

growing number of heritability estimates for binary traits using

animalmodels, we are still lacking statistical studies comparing

different estimationmethods.

In order to address these different issues, we conducted a

comprehensive simulation study carrying out a statistical

comparison of the performance of parent–offspring regres-

sions and animal models in estimating heritability. We

assessed the influence of different factors on this comparison.

First, we simulated contrasted conditions to assess the influ-

ence of environmental effects shared by individuals: (i) no

shared environment, (ii) share of a non-transgenerational

environmental effect and (iii) share of a transgenerational

environmental effect. Second, we investigated the heritability

estimation for both a continuous and a binary trait, using

several popular estimation methods to fit the animal model to

Gaussian or binomial data. We also investigated in each case

the influence of data quality and quantity (Quinn et al. 2006)

on the bias and precision of heritability estimates by simulat-

ing (i) a large and a small-size data set with (ii) a high and a

low level of knowledge about the genetic relationships

between individuals (i.e. a fully connected pedigree and a

sparsely connected pedigree with many missing relationships).

Finally, we investigated estimates for low, medium and high

true heritability levels of the traits, in particular because of

possible boundary effects for low heritability level, which

could lead to shifts in accuracy or precision. Our results are

discussed along some results from other studies, and conclu-

sions are drawn about the relevance of each approach and

method in the form of advice to the practitioner.

Material andmethods

SCENARIOS FOR SIMULATION OF PEDIGREES AND

PHENOTYPES

We investigated the influence of three parameters on the

estimation of heritability by different methods: (i) the true

heritability level of the trait, using three levels: 0.5 (high herita-

bility), 0.3 (moderate heritability) or 0.1 (low heritability); (ii)

sample size, using two levels of population size: 125 individuals

per generation (‘large’ sample) or 25 individuals per generation

(‘small’ sample); and (iii) pedigree connectivity level, using two

levels: full connectivity (all parental relationships were known)

or sparse connectivity (a fraction of relationships weremissing,

see below). The values of these parameters were chosen to be

Table 1. Difference between estimates of heritability of continuous

traits obtained from the parent–offspring regressions (RegPO) and ani-

mal models (AM) on the exact same data sets in the four studies show-

ing both estimates published so far (we included only studies based on

observed pedigree). Positive values indicate higher values for the animal

model. Significance of differences could not be tested, because informa-

tion on sample size is not always available. Marked (*) heritability are

considered as zero for the differences computation. Additionnal ran-

dom effects (‘Effects’ column) are either maternal effects (M) or brood-

litter effects (BL, also called ‘nest effect’ in the cited articles)

Phenotypic trait Effects RegPO AM Differences Refs

Bodymass

(lambs, June)

— 0�00 0�31 0�31 1

Bodymass

(lambs,

September)

— 0�02 0�29 0�27 1

Bodymass

(yearling,

June)

— 0�12 0�43 0�31 1

Bodymass

(yearling,

September)

— 0�07 0�24 0�17 1

Bodymass

(2-year-old,

June)

— �0�15* 0�03 0�03 1

Bodymass

(2 years old,

September)

— �0�09* 0�00 0�00 1

Bodymass

(3 years old,

June)

— 0�28 0�27 �0�01 1

Bodymass

(3 years old,

September)

— 0�49 0�51 0�02 1

Bodymass

(4 years old,

June)

— 0�26 0�23 �0�03 1

Bodymass

(4 years old,

September)

— 0�59 0�34 �0�25 1

Bodymass

(adult, June)

M 0�39 0�28 �0�11 1

Bodymass

(adult,

September)

M 0�57 0�81 0�24 1

Parental effort BL 0�59 0�43 �0�16 2

Cap color BL 0�06 0�10 0�04 3

Wing length M, BL 0�76 0�72 �0�04 4

Wing projection M, BL 0�47 0�48 0�01 4

Tail length M, BL 0�68 0�81 0�13 4

Bill depth M, BL 0�07 0�07 0�00 4

Bill width M, BL 0�39 0�46 0�07 4

Bill length M, BL 0�97 0�84 �0�13 4

Skull length M, BL 0�44 0�32 �0�12 4

Tarsus length M, BL 0�72 0�73 0�01 4

1(R�eale et al. 1999), 2(MacColl & Hatchwell 2003), 3(Hadfield et al.

2006), 4(�Akesson et al. (2008)). For the latter study, we used estimates

from the animal model called ‘mean animal model’, instead of the

‘repeated measures animal model’, for the relevance of the comparison

with the parent–offspring regression (e.g. same phenotypic variance).
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realistic in regard to field studies. By combining these levels, we

obtained 12 different scenarios. For each of these scenarios, we

considered three different situations: (i) related individuals

shared no common environmental effect, (ii) related individu-

als shared a common but non-transgenerational environmen-

tal effect, here a resemblance between individuals from the

same mother with no link to the mother’s phenotype or geno-

type, and (iii) related individuals shared a common transgener-

ational effect, here through a common breeding patch for a

given fraction of parents and offspring (see below). For each

scenario and situation, we simulated 1 000 pedigrees and the

associated phenotypes on which we estimated heritability. The

phenotypes were either normally distributed or binary. In

total, we simulated 72 000 different pedigrees and associated

phenotypic data sets.

To simulate pedigrees, we considered a closed and satu-

rated population (i.e. no immigration) with nonoverlapping

generations (i.e. the whole population was replaced by

local recruits at each generation), breeding on 30 different

patches for the large population and six patches for the

small population (approximately four individuals per

patch). Pedigree depth was kept constant to eight genera-

tions. First, we randomly assigned a breeding patch to

each individual of the first generation. For each of the fol-

lowing generations, we again randomly assigned a breeding

patch to each individual and randomly drawn its parents

within the patch. We then considered a natal dispersal rate

of 0.5, that is, offspring have a probability of 0.5 to

remain associated to the same breeding patch as their par-

ents. The resulting average number of offspring per pair

was 1.5, with a maximum between 5 and 7 (depending on

scenarios). As there is no juvenile mortality in our simula-

tions, this is the actual number of recruited offspring.

When generating sparsely connected pedigrees, we first gen-

erated a fully connected pedigree to simulate individual

phenotypes (see below). Then, we randomly selected 50%

of sires and 20% of dams in the pedigree and reported

them as missing values when estimating heritability. To

include breeding patches in the simulation process generat-

ing fully connected pedigrees, we modified the R function

generatePedigree() from the GeneticsPed package

(Gorjanc et al. 2007, see Appendix A). We used the

fpederr() function from the pedantics package (Morrissey

& Wilson 2009), which randomly generated missing data in

a full pedigree, to make them sparse when needed.

Using these pedigrees, we simulated either a normally dis-

tributed phenotypic trait or a binary phenotypic trait. For the

normally distributed trait, the phenotype yi of individual i was

obtained using the following equation:

yi ¼ lþ ai þ ei eqn 1

where l was the mean phenotype in the population, whose

value was arbitrarily set to 10, ai was the breeding value for the

individual i, normally distributed assuming genetic additive

variance VA and ei was a residual (‘environmental’) variation,

normally distributed with variance one.We used the rbv func-

tion from the R package MCMCglmm (Hadfield 2010a) to

compute the breeding value ai according to the simulated pedi-

gree andVA. This function includes aMendelian random devi-

ation for each offspring. This corresponds to the simplest

version of the animal model (Kruuk 2004; Wilson et al. 2010).

The value VA varied according to the true heritability level

investigated and was the only variance component to vary

across scenarios. When individuals shared a common environ-

mental non-transgenerational maternal effect, we added the

effect of the identity of the mother k on the phenotype of the

offspring i:

yi ¼ lþ ai þmk þ ei eqn 2

This effect was non-transgenerational because by adding the

identity of the mother as a random effect, we assumed a resem-

blance among the offspring of the same female, but not

between the female and her offspring.When individuals shared

a common transgenerational breeding patch effect, we added

the effect of the breeding patch j on the phenotype of the indi-

vidual i:

yi ¼ lþ ai þ pj þ ei eqn 3

The variance of both the maternal and breeding patch effects

was set to one. Because VA was the only variance component

that could be changed to reach the desired true level of herita-

bility, the total phenotypic varianceVP varied across scenarios.

The computation ofVP was always based on all variance com-

ponents fitted in themodel.

For the binary distributed phenotypic trait, we adjusted the

value of l to obtain an arbitrary proportion of 1/3 of individu-

als with a phenotype 1 (and 2/3 with phenotype 0) in the popu-

lation; this proportion was reached for l=�0.41. We used the

same equations as for a normally distributed phenotype and

subsequently defined the binary phenotype using a threshold

as follows:

y0;1i ¼ 1 if yi [ 0
0 if yi \ 0

�
eqn 4

ESTIMATION OF HERITABIL ITY

Heritability was estimated using either amid-parent–mean-off-

spring regression (Falconer &Mackay 1996; Roff 1997; Lynch

&Walsh 1998), hereafter abbreviated RegPO in tables and fig-

ures, or an animal model (Lynch &Walsh 1998; Kruuk 2004).

For the continuous phenotypic trait and using the animal

model, we computed estimates using either the widely used

restricted maximum likelihood method (REML, Patterson &

Thompson 1971; Knott et al. 1995) or Markov Chain Monte-

Carlo method (MCMC, Sorensen & Gianola 2002; Hadfield

2010b; Gelman et al. 2004). These animal models follow the

formalism described in eqns 1–3, respectively, for situations

where individuals shared no common environmental effect, a

non-transgenerational maternal effect and a transgenerational

breeding patch effect.

For the binary phenotypic trait in the parent–offspring

regression, we used the method described in Roff (1997):
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heritability was first estimated as if the trait was normally dis-

tributed (noted ĥ2obs), and a correction was then applied to the

estimate obtained (Dempster & Lerner 1950; Elston, Hill &

Smith 1977; Lynch & Walsh 1998) based on the threshold

model hypothesis. To account for the binary distribution, this

correction uses the proportion p of phenotypes 1 (e.g. presence

of the character) to compute the value of the normal standard

curve z at the threshold corresponding to p. The heritability

ĥ2
obs was then corrected as follows:

ĥ 2 ’ pð1� pÞ
z2

ĥ2
obs eqn 5

For the binary phenotypic trait in animal models, we used

three different estimation methods. (i) Based on the correcting

method described above, we estimated heritability using

REMLas if the trait was normally distributed and then applied

the same correction (Charmantier, Keyser & Promislow

2007). This method is thereafter abbreviated REMLc (for

‘corrected REML’). As far as we know, this method has never

been properly validated. (ii) We used penalized quasi-likeli-

hood (PQL, Breslow & Clayton 1993; Breslow & Lin 1995).

This method is known for generally underestimating variance

components for binary data (Rodriguez & Goldman 2001;

Callens & Croux 2005; Gilmour et al. 2006). However, it is

currently the default estimation method of the ASReml soft-

ware (Gilmour et al. 2006). (iii) We also resorted to MCMC

methods (Hadfield 2010a). Animal models for the binary

trait were built using the following equation (here for the

situation where individuals shared no common environmental

effect):

li ¼ lþ ai þ ei eqn 6

where li is a normally distributed hypothetical trait for individ-

ual i, called liability. Because binary data do not provide

enough information to infer liability variance, we fixed the

residual variance to 1. The probability of displaying phenotype

1was linked to the liability through a probit link function, such

that:

Pðy0;1i ¼ 1Þ ¼ probit�1ðliÞ eqn 7

Fitting this model allowed us to get an estimate V̂A of the addi-

tive genetic variance.We then calculated the heritability as:

ĥ2 ¼ V̂A

V̂A þ 1þ 1
eqn 8

where the first 1 in the denominator stood for the residual

variance and the second 1 for the ‘probit link’ variance. This

last term was needed to estimate heritability on the liability

scale (Nakagawa & Schielzeth 2010) corresponding to the

estimate given by the parent–offspring regression (eqn 5). For

the MCMC estimation of the heritability of a continuous

trait, we used the usual inverse-Gamma(0.001,0.001) distribu-

tion as the prior distribution for variance components. After

pilot studies, we let the MCMC run for 500 000 iterations

with a thinning interval of 10 after a burn-in of 10 000 in

order to obtain effective sampling sizes around 20 000. For

the MCMC estimation in the case of a binary trait, we used a

v2 distribution with one degree of freedom as the prior

distribution rather than the inverse-Gamma distribution. This

choice was motivated both by software constraints and by the

fact that the inverse-Gamma resulted in a prior distribution

for heritability in which too much weight was put on the value

1 (see Appendix B), whereas the v2 resulted in a more bal-

anced distribution. For a binary trait, we let the MCMC run

for 1 million iterations with a thinning interval of 100 after a

burn-in of 10 000 in order to obtain effective sampling sizes

around 3 000. We used the posterior median as point estimate

of the posterior distribution.

We performed all computations using the R statistical soft-

ware (R Development Core Team 2011), except for REML,

REMLc and PQL,whichwere implemented using theASReml

software (Gilmour et al. 2006). MCMC estimations were

made using the MCMCglmm R package (Hadfield, 2010a).

Results are presented here for the heritability solely, but results

about additive genetic variance are presented inAppendix C.

ASSESSMENT OF THE METHODS FOR ESTIMATING

HERITABIL ITY

For each set of 1 000 simulations, we computed the mean and

2.5, 25, 75 and 97.5% quantiles to quantify the bias and the

dispersion of heritability estimates.We also calculated the root

mean square error (RMSE) defined as the square root of the

mean square difference between the estimate and its true value:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðĥ2 � h2Þ2�

q
. This statistics quantifies both bias and preci-

sion and is a measure of the quality of an estimator

(Bolker 2008). A small RMSE indicates that the estimator is

close to its true value both in terms of bias (systematic error)

and precision (random error). We also calculated coverage

(Bolker, 2008) of 95% confidence intervals (for regression,

REML and REMLc) and 95% credible intervals (for

MCMC). Coverages were computed as the proportion of

times these intervals contained the true value of heritability.

By definition, for a 1�a level of certainty, the coverage of con-
fidence or credible intervals should be 1�a. A coverage above

(resp. below) this predicted value indicates a conservative

(resp. anti-conservative) confidence or credible interval. Confi-

dence intervals were calculated assuming a normal distribution

of estimates (ĥ2 � 1:96 s.e.). Credible intervals were calculated

as highest posterior density intervals using the HPDinterval

() function from the coda R package (Plummer et al. 2006).

Results

HERITABIL ITY ESTIMATION IN THE ABSENCE OF

SHARED ENVIRONMENTAL EFFECTS

In the case of a continuous phenotypic trait, both parent–

offspring regression and animal model performed similarly

in estimating heritability (Fig. 1) although parent–offspring

regression tended to have a larger dispersion for small sam-

ple size and sparsely connected pedigree (Fig. 1, last column;

the 95% interquantile interval is systematically larger for the

parent–offspring regression than for the two other methods).

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution, 4, 260–275

264 P. de Villemereuil, O. Gimenez, & B. Doligez



Heritability was accurately estimated (i.e. mean values close

to the true value), with a bias usually less than the second

digit order, except for small sample sizes, for which the esti-

mates of the parent–offspring regression and animal model

using the MCMC estimation method were slightly biased

downwards (Fig. 1, last two columns; bias up to 0.25 for

the parent–offspring regression and 0.03 for the MCMC

estimation method). Because animal model estimates are

bounded to positive values, this model yielded lower disper-

sion of estimates for low level of true heritability, while esti-

mates of the parent–offspring regression could be negative

(Fig. 1, last column, last row). Even when constraining heri-

tability estimates from parent–offspring regressions to be

positive (e.g. by setting negative values to zero), the

precision of estimates would remain lower for the parent–

offspring regression than the animal model. RMSE values

were the lowest for the animal model using the REML esti-

mation method, showing that it was the best estimation

method. For low level of true heritability and small sample

size, the MCMC estimation method, however, performed

better (Table 2), which reflects its better precision for low

heritability level (Fig. 1, last row, h2 ¼ 0:1). The parent–off-

spring regression approach performed poorly when com-

pared with animal model–based estimation methods, but the

difference was lower when data quantity and/or quality was

high (i.e. large sample size and/or full pedigree connectivity)

and increased when data quantity and/or quality decreased.

When estimating heritability of a binary phenotypic trait,

the dispersion of heritability estimates increased in most

cases (Fig. 2), especially for small sample size and/or spar-

sely connected pedigree (Fig. 2, last three columns). This

was due to the low information contents of binary data,
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Fig. 1. Distribution of heritability estimates of a continuous trait for the different approaches and estimationmethods depending on the true level of

heritability (h2, dotted lines), pedigree connectivity (full and sparse) and sample size (N=1 000 or N=200). The simulations did not include environ-

mental effect shared by related individuals. Boxes represent 25 and 75% quantiles, and the middle line represents the mean. Whiskers show 2.5%

(bottom) and 97.5% (top) quantiles. Red boxes show distribution of estimates from the parent–offspring regression (RegPO), bluish boxes show dis-

tributions of estimates from the animal model using eitherREML (light blue) orMCMC (violet) estimationmethods.
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which amplified sampling variance. The parent–offspring

regression approach and the animal model using REMLc

yielded a particularly large dispersion of estimates (e.g. Fig.

2, last column, first row: the 95% interquartile interval

covers the whole [0,1] interval). The animal model using

PQL strongly underestimated heritability in all cases, even

though the bias decreased with decreasing true level of her-

itability. This was consistent with the known tendency of

PQL to underestimate large variance components (Gilmour

et al.2006). With small sample size (Fig. 2, last two col-

umns), the estimates given by the animal model using

MCMC were more biased, or as biased as, compared with

the parent–offspring regression or animal model using

REMLc (towards lower and higher values for high and

low levels of heritability respectively). However, the animal

model using MCMC yielded a lower level of estimate dis-

persion (i.e. smaller 95% interquartile intervals). This was

confirmed by the comparison of RMSE (Table 3), for

which the animal model using MCMC had the lowest val-

ues, except for small sample size and low true heritability

level (Table 3, h2 ¼ 0:1, last column). In this case, PQL

yielded higher-quality estimates (i.e. smallest RMSE)

because of a smaller dispersion and a decrease in bias with

decreasing heritability level. The bias observed for the

MCMC estimation method for small sample size was most

likely due to prior sensitivity issues (see Appendix B). For

both continuous and binary phenotypic traits, all

approaches and estimation methods led to anti-conservative

coverage in most cases, with 95% confidence/credible inter-

vals excluding the true heritability value in more than 5%

of the simulations (Fig. 3; the animal model with PQL is

not shown, because the bias caused coverage to be consis-

tently wrong in this case). The animal model performed

better for high-quantity and quality data (i.e. large sample

size and fully connected pedigree), as may be expected.

Conversely, the parent–offspring regression led to a better

coverage for a sparsely connected pedigree. For low level

of heritability (h2 ¼ 0:1) and low sample size, the animal

model with MCMC was conservative (i.e. above expected

95% coverage).

HERITABIL ITY ESTIMATION IN THE PRESENCE OF

SHARED NON-TRANSGENERATIONAL AND

TRANSGENERATIONAL EFFECTS

The comparison of heritabilityestimates in the presence of a

shared non-transgenerational environmental effect (i.e.

common mother for siblings) and a shared transgenerational

environmental effect (i.e. common breeding patch for parents

and offspring) showed that parent–offspring regression yielded

biased estimates only when the common environment shared

by individuals was transgenerational (Figs 4 & 5: here and fur-

ther, results are discussed for high-quantity and quality data,

i.e. N=1 000 and fully connected pedigree). This result con-

firmed that estimates from parent–offspring regression were not

sensitive to non-transgenerational effects (see Introduction).

For the continuous phenotypic trait, the animal model

yielded unbiased heritability estimates only when the shared

environmental effect was specified in the model (i.e. informed

animal model, Fig. 4). The bias of estimates from the animal

model in which no shared environmental effect had been speci-

fied (i.e. naive animal model) increased when the true level of

heritability decreased (Fig. 4). This is a consequence of the val-

ues of variance used for simulations: for low true heritability,

true VA was lower whereas the variance for additional effects

remained fixed to 1, hence increasing the relative importance

of the latter. The bias of estimates from the naive animal model

was also lower in the presence of a non-transgenerational

(maternal) compared with a transgenerational (breeding

patch) effect (Fig. 4). This last result was due to the difficulty in

generating a strong non-transgenerational maternal effect in

our simulations, as nonoverlapping generations led to a

reduced total number of offspring per mother. Indeed, a preli-

minary study showed the strength of a non-transgenerational

maternal effect to be very sensitive to the number of offspring

per mother. Results for small sample size and/or sparsely con-

nected results were qualitatively similar, although the estima-

tion of the additive genetic variance was biased downward (up

to 20%) for the informed animal model. Furthermore, the var-

iance of the maternal effect was overestimated (leading to an

additional underestimation of the additive genetic variance)

Table 2. Root mean square error (RMSE) of heritability estimates of a continuous trait for the different approaches and estimation methods

depending on the true level of heritability (h2), sample size (N) and level of pedigree connectivity (full or sparse). The simulations included no environ-

mental effect shared by related individuals

h2 0�5 0�3 0�1

N 1 000 200 1 000 200 1 000 200

Pedigree Full Sparse Full Sparse Full Sparse Full Sparse Full Sparse Full Sparse

RegPO 0�061 0�081 0�131 0�177 0�06 0�084 0�133 0�179 0�052 0�081 0�122 0�187
REML 0�053 0�064 0�122 0�144 0�054 0�064 0�125 0�138 0�04 0�054 0�093 0�108
MCMC 0�054 0�065 0�132 0�168 0�055 0�066 0�133 0�15 0�041 0�051 0�075 0�082

Estimation methods: RegPO, parent–offspring regression; REMLc, animal model with corrected restricted maximum likelihood; PQL, animal

model with penalized quasi-likelihood;MCMC, animalmodel withMonte-CarloMarkovChain estimation. The smallest RMSE are shown in bold

for each set of simulations. Because of the low precision expected for heritability estimates, we decided that a difference with the smallest RMSE of

less than 0�01 was nonsignificant.
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Fig. 2. Distribution of heritability estimates of a binary trait for the different approaches and estimationmethods depending on the true level of heri-

tability (h2, dotted lines), pedigree connectivity (full and sparse) and sample size (N=1 000 orN=200). The simulations did not include environmental

effect shared by related individuals. Boxes represent 25 and 75% quantiles, and the middle line represents the mean. Whiskers show 2.5% (bottom)

and 97.5% (top) quantiles. Red boxes show distribution of estimates from the parent–offspring regression (RegPO), bluish boxes show distributions

of estimates from the animal model usingREMLc (light blue), PQL (turquoise) orMCMC (violet) estimationmethods.

Table 3. Root mean square error (RMSE) of heritability estimates of a binary trait for the different approaches and estimation methods depending

on the true level of heritability (h2), sample size (N) and level of pedigree connectivity (full or sparse). The simulations included no environmental

effect shared by related individuals

h2 0�5 0�3 0�1

N 1 000 200 1 000 200 1 000 200

Pedigree Full Sparse Full Sparse Full Sparse Full Sparse Full Sparse Full Sparse

RegPO 0�101 0�137 0�221 0�315 0�093 0�134 0�208 0�308 0�084 0�131 0�194 0�315
REMLc 0�09 0�107 0�216 0�245 0�08 0�102 0�186 0�221 0�057 0�081 0�131 0�172
PQL 0�36 0�393 0�367 0�404 0�212 0�231 0�217 0�24 0�069 0�076 0�073 0�076
MCMC 0�078 0�09 0�156 0�183 0�077 0�097 0�142 0�159 0�056 0�073 0�106 0�127

Estimation methods: RegPO, parent–offspring regression; REMLc, animal model with corrected restricted maximum likelihood; PQL, animal

model with penalized quasi-likelihood;MCMC, animalmodel withMonte-CarloMarkovChain estimation. The smallest RMSE are shown in bold

for each set of simulations. Because of the low precision expected for heritability estimates, we decided that a difference with the smallest RMSE of

less than 0�01 was nonsignificant.
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when using a sparsely connected pedigree (see Appendix D for

more details).

For the binary phenotypic trait, the patterns were similar to

the continuous trait, except that biases appeared for estimates

from the informed animal model when the true level of herita-

bility was high or medium (Fig. 5, h2 ¼ 0:5 or h2 ¼ 0:3). Sur-

prisingly, the direction of the bias differed among estimation

methods (downward using MCMC, upward using REMLc).

For the MCMC estimation method, because both the additive

genetic variance and the variance of the other random (mater-

nal or environmental) effect were biased downward, and

because the bias was stronger for small sample size (see Appen-

dix D), we expect the prior sensitivity to be at the origin of the

bias in heritability estimates. Unfortunately, we could not test

this hypothesis, due to the impossibility to use uniform priors

in the MCMCglmm package. Concerning the REMLc

estimation method, the upward bias in estimates was observed

only in the presence of shared environmental effects and was

due to an underestimation of the variance of the environmental

effect combined with an overestimation of the additive genetic

variance (see Appendix D). The animal model using PQL lar-

gely underestimated heritability, as found above in the absence

of shared environment effects.

Discussion

WHICH APPROACH AND ESTIMATION METHOD FOR

ESTIMATING HERITABIL ITY IN THE ABSENCE OF

SHARED ENVIRONMENTAL EFFECTS?

In the case of a continuous trait in the absence of shared

environmental effects, our simulations showed little difference
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Fig. 3. Coverage of the 95% confidence (for parent–offspring regression (RegPO) and animalmodel usingREMLandREMLc) or credible (for ani-

mal model using MCMC) interval of heritability estimates over the simulations for each set of conditions and for the continuous (left) and binary

(right) phenotypic trait. The simulations included no environmental effect shared by individuals. For the binary trait, the coverage of 95%confidence

interval of estimates from the animal model using PQL is not shown. Bright bars: large sample size; grey tint bars: small sample size. Solid borders:

fully connected pedigree; dotted borders: sparsely connected pedigree. Expected coverage is 95% (horizontal line).
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in heritability estimates between the parent–offspring

regression and animal model, and little difference between

the REML and MCMC estimation methods used in the

animal model. However, the animal model using REML

seemed the most accurate and precise estimation method.

The parent–offspring regression showed more variability in

heritability estimates for low quantity and/or quality data,

that is, here for low sample size and/or low pedigree connec-

tivity. This increased variability originates from the partial

use of the information about the relatedness between individ-

uals, leading to a smaller statistical power. Importantly, in

the presence of a sparsely connected pedigree, the sample

size is impacted as well: for our large sample size simulations

(N=1 000), the actual sample size for parent–offspring

regressions varied between 302 and 400 and was 350 on

average; for our small sample size simulations (N=200), the
actual sample size varied between 49 and 92 and was 70 on

average.
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Fig. 4. Distribution of heritability estimates of a continuous trait for the different approaches and estimationmethods depending on the true level of

heritability (h2, dotted lines) and the environmental effect shared by individuals (non-transgenerational (left) or transgenerational (right) effect);

results obtained for a fully connected pedigree and a large sample size (1 000 individuals). Boxes represent 25 and 75%quantiles, and themiddle line

represents the mean. Whiskers show 2.5% (bottom) and 97.5% (top) quantiles. Filled boxes: naive models (including parent–offspring regression);
open boxes: informed animalmodels (see text).
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In the case of a binary trait, the simulations showed that the

animal model using MCMC was the most precise method and

yields the estimates of the best ‘quality’ (i.e. with the smallest

RMSE). The correctedREML (REMLc)method yielded valid

estimates in terms of accuracy, but suffered from a low

precision. The same result held for the parent–offspring regres-

sion: it also proved accurate but suffered from a disastrous pre-

cision for low quantity/quality data, in which case heritability

estimates covered the entire [0,1] range and showed very large

50% interquartile intervals (up to 0.4). Admittedly, the bias

and precision of the estimation methods for binary traits will

depend on the incidence of the phenotype under study. Our

results are based on an incidence of the phenotype of 1
3. How-

ever, in many studies, the phenotypes under consideration will

show an incidence closer to one or zero, in which case the

estimation methods could yield biased estimates (e.g. see van

Vleck 1972, for the parent–offspring regression on binary

traits). Besides, as mentioned earlier, accuracy is a systematic
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Fig. 5. Distribution of heritability estimates of a binary trait for the different approaches and estimationmethods depending on the true level of heri-

tability (h2, dotted lines) and the environmental effect shared by individuals (non-transgenerational (left) or transgenerational (right) effect); results

obtained for a fully connected pedigree and a large sample size (1 000 individuals). Boxes represent 25 and 75%quantiles, and the middle line repre-

sents the mean. Whiskers show 2.5% (bottom) and 97.5% (top) quantiles. Filled boxes: naive models (including parent–offspring regression); open
boxes: informed animalmodels (see text).
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error leading to downward or upward biases, whereas impreci-

sion is a stochastic source of error (i.e. a consequence of sam-

pling stochasticity). In most cases, practitioners will analyse

only one data set, that is, one particular sampling associated

with the true heritability value to be estimated. The influence

of inaccuracy on the estimate obtained based on a particular

data set can be assessed (e.g. by referring to simulations such as

ours or by performing its own preliminary simulation study by

using the R package pedantics, Morrissey et al. 2007). Con-

versely, the influence of imprecision remains unknown for a

particular data set. The standard error of the estimate is esti-

mated from this one data set, but our coverage analysis shows

that this estimate is not trustful when considering heritability.

Therefore, we emphasize that a method with a limited inacccu-

racy but rather high precision, such as MCMC for binary

traits, or even PQL if the expected heritability is small enough

(less than 0.1), should be preferred over a more accurate but

highly imprecise method, such as the REMLc. The RMSE

allows summarizing both accuracy and precision to decide

which estimator should be preferred. Despite the inability to

assess imprecision, the strong impact of low sample size on the

precision of estimates given by parent–offspring regressions

seems to have been overlooked so far in the literature. Of the

four studies estimating the heritability of binary traits using

parent–offspring regressions in the wild, providing 13 heritabil-

ity estimates in total (Hansson, Bensch & Hasselquist 2003;

Charmantier, Keyser & Promislow 2007; Doligez et al. 2009;

Charmantier et al. 2011), we, indeed, found five estimates

based on a sample size lower than 100 parent–offspring pairs.

We therefore recommend making use of a sufficiently high

sample size when estimating heritability of a binary trait in the

wild using the parent–offspring regression. Furthermore, the

low level of precision suggests that comparing results of differ-

ent regressions (for example father–offspring and mother–

offspring regressions) is relevant only if estimates are computed

from the exact same data set (i.e. same sample size from the

same data set). This, however, means a loss of information for

at least one of the regressions, because the sample to be used

for all regressions should correspond to the smallest sample

over all regressions (e.g. the father–offspring regression if more

fathers than mothers are missing). If the regressions compared

are not conducted on the same sample, the high imprecision

for small sample size (say below 100 pairs) may mask high dif-

ferences between estimates. Conversely, for high-quantity and

quality data (i.e. large sample size and high pedigree connectiv-

ity), all approaches and methods behaved similarly, except for

the animal model using PQL, which always yielded inaccurate

(though precise) estimates. Yet, the PQL estimation method is

not necessarily to be avoided because, for small variance com-

ponents (i.e. low heritability), the animal model using PQL

remains a valid estimation method (see Table 3, last column).

In line with Wilson et al. (2011), we recommend carrying out

preliminary simulations as a validation step (see Morrissey

et al. 2007, for more details) for any particular data set before

the use of PQL estimation method. Note also that Engel &

Buist (1998) developed a bias correction for sire models, which

might be extended to animalmodels with aminimumof effort.

ESTIMATING HERITABIL ITY IN THE PRESENCE OF

SHARED ENVIRONMENTAL EFFECTS AND

CONSEQUENCES ON BIAS

Our simulations showed that the parent–offspring regression

is sensitive to shared environmental effects only when they

are transgenerational. This result was expected but it has far

from trivial implications, as most environmental effects fitted

in animal models are non-transgenerational, including paren-

tal effects. Indeed, fitting an environmental maternal effect in

animal models in the way recommended in the literature

(Kruuk 2004; Wilson et al. 2010) is carried by including the

identity of the mother as a random effect. Including this effect

in the animal model allows one to control for additional sib-

ling resemblance due to sharing the same mother, but not for

dependency between mother and offspring’s phenotypes.

Hence, we do not expect this type of non-transgenerational

parental effects to result in differences between heritability

estimates provided by animal models and mid-parent–off-

spring regressions. Estimating trait heritability separately for

mothers and fathers (using e.g. father–offspring and mother–

offspring regressions) allows one to detect transgenerational

maternal or paternal effects that are not accounted for. In

order to fit transgenerational maternal effects, more general

models are available, such as the Kirkpatrick & Lande model

(Kirkpatrick & Lande 1989; R€as€anen & Kruuk 2007; Hill &

Kirkpatrick 2010; Day & Bonduriansky 2011). However, it

might be very complex to handle in the context of wild popu-

lation studies, because it requires a fine understanding of

parental traits involved in the offspring phenotype. A simpler

model (Willham model : Willham 1963, , 1972; Thompson

1976) can be used, allowing the estimation of a genetic mater-

nal effect ( Wilson et al. 2004, , 2010), that is, an effect assum-

ing a hypothetical ‘maternal performance’ trait, which

summarizes maternal traits potentially affecting the offspring

phenotype. It also assumes that this performance is heritable.

This effect is fitted by adding the ‘maternal pedigree’ to the

animal model (i.e. an additive genetic effect based on the

relatedness computed using only the matrilineage of the indi-

viduals). This kind of transgenerational maternal effects can

account for any maternal trait that has an effect on the off-

spring’s phenotype under study given that the acting maternal

trait has a genetic basis (Wilson et al. 2010). It is necessary to

point out that a poorly comprehensive (i.e. naive) animal

model is likely to be more biased than a parent–offspring

regression. It is, thus, highly important to cautiously define

shared environment effects when using animal model. Only

when properly conceived does the animal model show high

advantages over parent–offspring regression, because of its

higher statistical power and greater flexibility in taking possi-

ble transgenerational environmental effects into account, but

also because it allows using repeated measurements and

accounting for dominance effects (Lynch &Walsh 1998).

BAYESIAN INFERENCE FOR ANIMAL MODELS

Heritability estimates from animal models can be obtained

using either a Frequentist (here, REML or REMLc) or a

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution, 4, 260–275
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Bayesian (here, MCMC) method. The Bayesian framework

has two main advantages. First, it allows fitting a great vari-

ety of non-Gaussian data distributions. Second, the calcula-

tion of transformed estimates (like heritability) and their

associated standard error is straightforward, through the use

of posterior distributions that do not rely on first order

approximations (Fischer, Gilmour & Werf 2004). Moreover,

it is also possible to use an alternative to MCMC estimation

method, the integrated nested laplace approximation

(INLA). The INLA has recently been shown to provide

accurate heritability estimates for Gaussian and several

non-Gaussian distributions, and is faster than the MCMC

(Holand et al. 2011, introducing the R package animalINLA).

Unfortunately, the INLA performed much poorer than

MCMC when estimating heritability based on binary data

(Holand et al. 2011). Note that the pedigreemm R package

(Vazquez et al. 2010) uses the Gaussian-Hermite quadrature

for non-Gaussian distribution. Laplacian approximations

(e.g. the PQL) are simple particular cases of Gaussian-Her-

mite quadrature, which can generate less approximate

estimates given sufficient computation time and therefore are

less biased than PQL (Rodriguez & Goldman 2001).

The drawbacks of Bayesian methods mostly relate to

practical issues. First, concerning computation time, Frequ-

entist methods (REML and REMLc) are far quicker

(almost instantaneous) than the MCMC method, which

could take up to two hours depending on sample size and

model complexity (e.g. linear vs. generalized linear model) in

our study. Second, the Bayesian framework in general and

MCMC in particular are also less user-friendly. In addition

to defining the model, one needs to set a relevant prior on

variance components (see below) and appropriate MCMC

checking (Monte-Carlo error, convergence, autocorrelation).

Third, in terms of pedigree-handling software, REML is

implemented in a wide choice of packages, including the

(non free) ASReml software (Gilmour et al. 2006), the (free)

WOMBAT software (Meyer 2007) and the (free) R package

pedigreemm (Vazquez et al. 2010), while MCMC is only

implemented in the (free) R package MCMCglmm (Hadfield

2010a).

Despite their flexibility, Bayesian methods for animal

models (implemented through either MCMC or INLA) still

require the specification of a prior distribution for variance

components, which can be tricky especially for binary traits.

Indeed, the value of the residual variance has to be fixed in

that case (see Material & methods), and this happens to

break the symmetry in the prior distribution for heritability,

putting too much of the prior probalistic weight on 0 or 1.

We showed in Appendix B that the commonly used inverse-

Gamma prior is no longer a suitable option in this case, and

we introduced the use of a v2 distribution following Gelman

(2006)’s advice. However, for small sample size, the heritabil-

ity estimates still suffer from a high sensitivity to this v2 prior
distribution yielding a tedious downward bias (see Fig. 2 and

Appendix B). A probably more convenient solution would

be to assign directly a uniform prior on the heritability

parameter (e.g. Charmantier et al. 2011). Unfortunately, this

is currently not possible using existing pedigree-handling

packages (MCMCglmm or animalINLA), unless one resorts

to programming (Damgaard 2007; Waldmann, 2009; Papaı̈x

et al. 2010; Authier, Cam & Guinet 2011; Charmantier et al.

2011).

FUTURE CHALLENGES IN HERITABIL ITY ESTIMATION

Whatever the estimation approach andmethod used, twomain

issues have been overlooked and remain to be addressed when

estimating heritability in the wild. First, heritability estimates

obtained so far relied on the infinite locus assumption, which

assumes an infinite number of unlinked loci involved in the

phenotype, each one having a small impact (no strong trait

locus). This assumption ignores genetic constraints such as

linkage and oligogenic determinism. The multilocus associa-

tion model (Sillanp€a€a 2011) allows overcoming this infinite

locus assumption and considering oligogenic traits. This model

takes into account more genetic effects than animal model (e.g.

epistasis and linkage), but requires dense genetic markers.

Given the rapid development of molecular techniques imple-

mented to explore the genomes of various species in the wild,

for example, the use of SNPs banks (Ellegren & Sheldon 2008;

Backstr€om et al. 2008; Bers et al. 2010; Slate et al. 2010) we

have little doubt that such detailed genetic information will be

available in the coming years to efficiently use the multilocus

associationmodel.

Second, contrary to captive or domestic populations, wild

populations are usually characterized by imperfect individual

detection. If individual capture or sighting probability is

linked to the trait of interest, in particular in a transgenera-

tional way, heritability estimates may be biased (Cam 2009;

Doligez et al. 2012). Improving the estimation of heritability

of traits in wild populations may therefore require the devel-

opment of integrated capture–recapture animal model

(CRAM), which would account for full pedigree information

and imperfect individual detection simultaneously (O’Hara

et al. 2008; Papaı̈x et al. 2010). Such models have already

been developed (Papaı̈x et al. 2010), but user-friendly soft-

ware implementation is still missing. Making a thorough list

of challenges regarding heritability estimation in the wild is

not the point of the present article. However, considering the

work that still needs to be performed, we urge field biologists

to remain cautious when drawing conclusions from heritabil-

ity estimation results.

Conclusions

Our simulations showed that the animal model was the best

approach to estimate heritability, using REML for Gaussian

phenotypic traits and MCMC for binary traits. We join previ-

ous authors (Quinn et al. 2006; Postma & Charmantier 2007)

in pointing out the importance of data quantity and quality:

our simulations revealed the high level of imprecision for esti-

mates given by some approaches and estimation methods for a

sample size of 200 individuals, which may be considered

already a large sample in studies on wild populations.

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution, 4, 260–275
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Importantly, this is especially true for binary traits. To best

describe and account for the influence of shared environmental

effects on heritability estimates, we advocate the systematic use

of (and comparison between) mid-parent–offspring, mother–

offspring and father–offspring regressions in addition to

animal models to compute heritability estimates. Comparing

the different estimates obtained would allow detecting over-

lookednon-transgenerational environmental effects,whichwould

generate low heritability estimates for the parent–offspring

regression but high estimates for the animal model. However,

given the high imprecision of parent–offspring regression, this

comparison is not likely to be significant. This comparison

would also allow detecting sex-dependent transgenerational

effects, such as maternal transgenerational effects, which

would generate higher estimates for mother–offspring com-

pared with father–offspring regressions. Therefore, we still

encourage both parent–offspring and animal model estimates

to be reported simultaneously. Although improvements in esti-

mating heritability are still required, especially regarding bin-

ary traits and implementation of transgenerational parental

effects, we hope that our study contributes to a better guidance

and use ofmodels andmethods to estimate heritability of traits

in wild populations.
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