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Chapter 11– Electronic Supplement
General Quantitative Genetic Methods for Com-
parative Biology

Pierre de Villemereuil and Shinichi Nakagawa

This Online Pratical Material (OPM) is intended to provide working ex-
amples of the different models described in the corresponding chapter (hereby
referred to as the main text). As stated in the main text, we will focus on the
R package MCMCglmm (Hadfield, 2010a) to fit phylogenetic mixed models.

11.1 A simple model in MCMCglmm

Sources
ape{R} (Paradis et al, 2004)
MCMCglmm{R} (Hadfield, 2010a)

Data
data_simple.txt Data frame containing the phenotypic data
phylo.nex Phylogeny file (NEXUS file)

We will begin by fitting the simple comparative model described in main
text section 2.1, using simulated data. Assume we have measurements of
a phenotype phen (say the body size) and a cofactor variable (say the
temperature of the environment), for several species:

> library(ape)

> library(MCMCglmm)

> phylo<-read.nexus("phylo.nex")

> data<-read.table("data_simple.txt",header=TRUE)

> head(data)

phen cofactor phylo

1 107.06595 10.309588 sp_1

2 79.61086 9.690507 sp_2

3 116.38186 15.007825 sp_3

4 143.28705 19.087673 sp_4

5 139.60993 15.658404 sp_5

6 68.50657 6.005236 sp_6

We want to investigate a possible relationship between the phenotypes and
the cofactor, while controlling for any phylogenetic dependency in the dataset.

de Villemereuil P, Nakagawa S (2014) General Quantitative Genetic Methods for Com-
parative Biology. In: Garamszegi LZ (ed.), Modern phylogenetic comparative methods
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To achieve our goal, we want to use the phylogenetic mixed model of the
OPM section 11.1, implemented in the MCMCglmm package. Note the phylo
column containing the name of the species in our dataset: it corresponds to
the phylogenetic effect we are going to include in our model. In order to do so,
we need to calculate the inverse of the ΣΣΣ matrix of phylogenetic correlation:

> inv.phylo<-inverseA(phylo,nodes="TIPS",scale=TRUE)

The inverseA() function accepts R phylogenetic objects. Here, we state that
we wants to calculate ΣΣΣ

−1 using the argument nodes=‘TIPS’. If, as explained
in the Introduction of the main text, we want to calculate the inverse of
the bigger matrix ΩΩΩ (for a much larger phylogeny, it would be much more
efficient), we would have used nodes=‘ALL’ to include ancestral nodes into
the calculation. The scale argument yields a correlation matrix (scaling total
branch length, from root to tips, to one).

Now, we have the inverse of our matrix, but because it is using a Bayesian
framework, this package needs prior distributions for the fixed and random
effects. The default prior for the fixed effects is suitable for our needs. How-
ever, regarding the random effects, we need to define a set of priors for the
variance components of reach random effect:

> prior<-list(G=list(G1=list(V=1,nu=0.02)),R=list(V=1,nu=0.02))

These priors (G for the random effect(s), and R for the residual variance)
correspond to an inverse-Gamma distribution with shape and scale parame-
ters equal to 0.011, which is relatively canonical, though not without draw-
backs (see Gelman, 2006, for more information). The model is then defined
as follows:

> model_simple<-MCMCglmm(phen~cofactor,random=~phylo,

family="gaussian",ginverse(phylo=phylo.inv$Ainv),prior=prior,

data=data,nitt=5000000,burnin=1000,thin=500)

Here, we assume a linear relationship between phen and cofactor, with a
random effect phylo corresponding the phylogenetic effect. The argument
ginverse allows us to include a custom matrix for our random effect phylo,
using the results of the inverseA function (above). We used the prior vari-
able defined above. The variables nitt and burnin are used to calibrate
the MCMCM algorithm: it will iterate for burnin iterations before recording
samples (to ensure convergence), and then iterate nitt times. The parameter
thin helps us to save memory by saving only every ‘thin’ value and thus,

1 MCMCglmm univariate prior formulation is such that it corresponds to an inverse-

Gamma with shape parameter α =
nu

2
and scale parameter β =

nu×V

2
. It is important

to note that this inverse-Gamma could become unwantedly ‘informative’ when vari-
ance components are close to 0 so that it is always recommended running models
with different prior specifications. For which prior should be used, see discussion in
Hadfield (2010b) and also one can find more recent discussion on this topic online
within the correspondences in the r-sig-mixed-modes mailing list.
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dropping highly auto-correlated values2. Note that the use of nodes=‘TIPS’
or nodes=‘ALL’ in the inverseA function can have a noticeable impact on
auto-correlation: whereas the latter would speed up computation, it can re-
sults in higher auto-correlation. Whether to use to one or the other would
thus depend mainly on the size of the phylogeny (very large phylogenies would
probably need nodes=‘ALL’ to allow MCMCglmm to run at all). Finally, note
that this example can take up to a few hours to run.

After checking for convergence (for example using heidel.diag() func-
tion), we can look at the output summary:

> summary(model_simple)

Iterations = 1001:4999501

Thinning interval = 500

Sample size = 9998

DIC: 1515.822

G-structure: ~phylo

post.mean l-95% CI u-95% CI eff.samp

phylo 210 92.27 333.8 9998

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

units 85.83 60.78 112.8 10986

Location effects: phen ~ cofactor

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 39.714 26.086 53.602 9998 <1e-04 ***

cofactor 5.179 4.902 5.444 9998 <1e-04 ***

The first part shows a summary of MCMC sampling parameters, and gives
the Deviance Information Criterion (DIC) of the model. The DIC is a model
selection criterion comparable to Akaike’s Information Criterion (AIC)3. Fol-
lowing are the results for the random effect variances (G-structure, contain-

2 Because the MCMC sampling is Markovian, it is a time-series, which often appears
to be auto-correlated: closely following iterations tend to resemble each other. The
“thinning”help to save memory when running the MCMC for longer. For phylogenetic
mixed model, this auto-correlation can be large and problematic: always make sure
your effective sample size is large enough and that auto-correlation is low.
3 Here we do not provide explanations on how information criteria can be used for
model selection. For a detailed discussion on this topic, the reader is referred to
Chapter 12.



4

ing the variance of the phylo effect) and the residual variance (R-structure,
the residual variance is called units in MCMCglmm). We have information
about the posterior mean of the estimate, its 95% credible interval4 and its
effective sample size. The latter is a measure of the auto-correlation within
the parameter sample: it should be close to the MCMC sample size above,
or failing that, it should be at least large enough (say more than 1,000). The
summary of the fixed effects (intercept and cofactor) are similar, except
we also have a “pMCMC” value for significance testing if the parameter is dif-
ferent from zero5. By using plot(model_simple), we can obtain the “trace”
of the sampling (to check for convergence and auto-correlation) and posterior
density of each parameter (Fig. 11.1).

Finally, we can easily calculate the posterior probability of the phylogenetic
signal λ (see section 2 in the main text) using:

> lambda <- model_simple$VCV[,'phylo']/

(model_simple$VCV[,'phylo']+model_simple$VCV[,'units'])

We can calculate the posterior mean (mean of the posterior distribution),
posterior mode (most likely value regarding the posterior distribution) and
the 95% credible interval of λ :

> mean(lambda)

[1] 0.6961347

> posterior.mode(lambda)

var1

0.7442347

> HPDinterval(lambda)

lower upper

var1 0.5267074 0.8522012

11.2 Multiple measurements model in MCMCglmm

Sources
ape{R} (Paradis et al, 2004)
MCMCglmm{R} (Hadfield, 2010a)

Data
data_repeat.txt Data frame containing the phenotypic data (with mul-

tiple measurement)
phylo.nex Phylogeny file (NEXUS file)

4 Credible interval can be considered as the Bayesian version of confidence intervals,
and also it is known as the highest posterior density (see Hadfield, 2010b).
5 If we are strictly Bayesian, we should not do significance testing because such
a concept belongs to the frequentists’ paradigm. However, we use “pMCMC” as if
frequentists’ p-values for convenience.
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Fig. 11.1 Plot of trace and posterior density for fixed effects (left) and variance
parameters (right).

Let’s build up on the example from the last section by adding multiple
measurements per species:

> data<-read.table("data_repeat.txt",header=TRUE)

> head(data)

phen cofactor species phylo

1 107.41919 11.223724 sp_1 sp_1

2 109.16403 9.805934 sp_1 sp_1

3 91.88672 10.308423 sp_1 sp_1

4 121.54341 8.355349 sp_1 sp_1

5 105.31638 11.854510 sp_1 sp_1

6 64.99859 4.314015 sp_2 sp_2

How can we analyse such a dataset using a phylogenetic mixed model? We
only have to add a new random effect taking into account the fact that each
species has a “multiple measurement effect”. Note the new column species,
which is identical to the phylo one and will be used for that purpose. First,
we will try to fit the model described in Eqn. 6 (main text), using the specific
mean of the cofactor:

> data$spec_mean_cf<-sapply(split(data$cofactor,

data$phylo),mean)[data$phylo]
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The code is a bit complex because we need to overcome the fact that R is
trying to sort alphabetically the species name (which we don’t want!), but we
are simply calculating the mean of the cofactor for each species and pulling
it in a new entry of the data frame. Now, because we have a new random
effect, we also need to change our priors. The model would thus be:

> prior2<-list(G=list(G1=list(V=1,nu=0.02),G2=list(V=1,nu=0.02)),

R=list(V=1,nu=0.02))

> model_repeat1<-MCMCglmm(phen~spec_mean_cf,random=~phylo+species,

family="gaussian",ginverse=list(phylo=phylo.inv$Ainv),

prior=prior2,data=data,nitt=5000000,burnin=1000,thin=500)

Since the columns phylo and species have the same content and are called
in the same fashion in the model, one would wonder if they are not accounting
for the same thing. Actually, a careful inspection of the ginverse argument
would show that we are providing the phylogenetic variance-covariance for
the phylo effect, but not for the species one. This means that species is
here to account for any specific effect that would be independent from the
phylogenetic relationship between species (e.g. environmental/niche effects).
This is also visible in Eqn. 4 in the main text. Here, because we distinguish
these effects from the residual variance, the residual variance units now
actually corresponds to the intra-specific variance (which is assumed equal
across species). The output summary follows:

> summary(model_repeat1)

Iterations = 1001:4999501

Thinning interval = 500

Sample size = 9998

DIC: 7187.331

G-structure: ~phylo

post.mean l-95% CI u-95% CI eff.samp

phylo 277.7 152.7 403.4 8804

~species

post.mean l-95% CI u-95% CI eff.samp

species 24.38 8.477 41.66 9444

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

units 65.78 59.49 72.28 9343
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Location effects: phen ~ spec_mean_cf

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 38.320 23.023 54.504 9998 <1e-04 ***

spec_mean_cf 5.097 4.888 5.289 9253 <1e-04 ***

Because our sampling of individuals within species was totally unbiased, the
results are similar, except we now have an estimate of the intra-specific vari-
ance, which is represented by the residual variance units.

We did not, however, use the whole dataset in the previous model. We totally
ignored the intra-specific variability of the cofactor. In order to get an esti-
mate for the “between-species” and “within-species” (see Eqn. 7 in the main
text), we need to use the within-group centring technique:

> data$within_spec_cf<-data$cofactor-data$spec_mean_cf

We can now use a slightly more elaborate model:

> model_repeat2<-MCMCglmm(phen~spec_mean_cf+within_spec_cf,

random=~phylo+species,family="gaussian",

ginverse=list(phylo=phylo.inv$Ainv),prior=prior2,data=data,

nitt=5000000,burnin=1000,thin=500)

The fixed effect spec_mean_cf corresponds to the between-species slope (just
as the previous model) and the fixed effect within_spec_cf corresponds to
the within-species slope. As usual, we can have a look at the results:

> summary(model_repeat2)

Iterations = 1001:4999501

Thinning interval = 500

Sample size = 9998

DIC: 7189.433

G-structure: ~phylo

post.mean l-95% CI u-95% CI eff.samp

phylo 278.3 158.7 408.9 9998

~species

post.mean l-95% CI u-95% CI eff.samp

species 24.39 8.303 41.67 9998
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R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

units 65.78 59.31 72.42 9998

Location effects: phen ~ spec_mean_cf + within_spec_cf

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 38.30006 22.54138 53.80957 9998 <1e-04 ***

spec_mean_cf 5.09879 4.89180 5.29816 9998 <1e-04 ***

within_spec_cf -0.05757 -0.42837 0.30606 9998 0.747

The results are almost unchanged, with apparently no relationship between
the phenotype phen and cofactor on the intra-specific level. Finally, we can
again calculate λ using:

> lambda <- model_repeat2$VCV[,'phylo']/

(model_repeat2$VCV[,'phylo']+model_repeat2$VCV[,'species']+

model_repeat2$VCV[,'units'])

11.3 An example of meta-analysis with Fisher’s
transformation of r (Zr)

Sources
ape{R} (Paradis et al, 2004)
MCMCglmm{R} (Hadfield, 2010a)

Data
data_effect.txt Data frame containing the effects for meta-analysis
phylo.nex Phylogeny file (NEXUS file)

Let’s use the same phylogeny as in the OPM section 11.2. We have an effect
size in Fisher’s z-transformation of correlation coefficient Zr per species along
with corresponding sample sizes (e.g. correlations between male coloration
and reproductive success):

> phylo<-read.nexus("phylo.nex")

> data<-read.table("data_effect.txt",header=TRUE)

> head(data)

Zr N phylo

1 0.28917549 13 sp_1

2 0.02415579 40 sp_2

3 0.19513651 39 sp_3

4 0.09831239 40 sp_4

5 0.13780152 66 sp_5

6 0.13710587 41 sp_6
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It is straightforward to fit a meta-analytic model in MCMCglmm. Let’s see
how the syntax looks like:

> inv.phylo<-inverseA(phylo,nodes="ALL",scale=TRUE)

> prior<-list(G=list(G1=list(V=1,nu=0.02)),R=list(V=1,nu=0.02))

> model_effect<-MCMCglmm(Zr~1,random=~phylo,family="gaussian",

mev=1/(data$N-3),ginverse=list(phylo=phylo.inv$Ainv),

prior=prior,data=data,nitt=5000000,burnin=1000,thin=500)

As you may have noticed the syntax is pretty much the same as in the OPM
section 11.1, including the same prior specification. A notable difference is
that we now use the argument mev, which stands for measurement error vari-
ance. We can pass vector of sampling variances to mev. We do not need a prior
for sampling error variances because we assume they are known (remember
for Zr, it is 1

n−3 ), thus not to be estimated. Also, for a quicker computation,

we used nodes="ALL" in the inverseA function this time6 in the main text.
The result looks like this:

> summary(model_effect)

Iterations = 1001:4999501

Thinning interval = 500

Sample size = 9998

DIC: -320.2919

G-structure: ~phylo

post.mean l-95% CI u-95% CI eff.samp

phylo 0.009016 0.001747 0.01931 10423

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

units 0.006078 0.001671 0.01113 9998

Location effects: Zr ~ 1

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 0.15887 0.06005 0.25381 9147 0.0038 **

6 In most analyses, this default option will be fine. As mentioned before, "TIPS" option
could reduce auto-correlation and will improve the chain “mixing”. Note that you will
get a warning message, saying some missing records are generated. This is because
MCMCglmm is using ancestral nodes and trait values of such nodes are treated as
missing values. See more on this in section 3.2
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Fig. 11.2 Funnel plot for effect sizes (Zr) with the meta analytic mean (dashed line).

The meta-analytic mean is Zr = 0.15887 and is significantly larger than zero.
In meta-analysis, it is common to plot what is called a funnel plot where
effect sizes are plotted with the inverse of the squared root of sampling error
variance, called ‘precision’ (Fig. 11.2). As you see, effect sizes funnel down
around the meta-analytic mean. This is what we exactly expect because effect
sizes with low precisions (low sample sizes) should have larger sampling er-
rors. Here, we do not go any further with phylogenetic meta-analysis. But to
follow up on this topic, you may want to see recent examples of phylogenetic
meta-regression models using MCMCglmm in Horváthová et al (2012) and
Prokop et al (2012). Other important issues in meta-analysis include statisti-
cal heterogeneity and publication bias (for further information, see Nakagawa
and Santos, 2012; Koricheva et al, 2013).

11.4 An example of non-Gaussian trait using count data

Sources
ape{R} (Paradis et al, 2004)
MCMCglmm{R} (Hadfield, 2010a)

Data
data_pois.txt Data frame containing the count phenotypic data
phylo.nex Phylogeny file (NEXUS file)

Suppose we have to analyse a dataset alike the one in the OPM section
11.1, but we are now interested in count data without multiple measurement:
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> data<-read.table("data_pois.txt",header=TRUE)

> head(data)

phen_pois cofactor phylo

1 1 7.8702830 sp_1

2 0 3.4690529 sp_2

3 1 2.5478774 sp_3

4 14 18.2286628 sp_4

5 1 2.5302806 sp_5

6 1 0.5145559 sp_6

Because we don’t have multiple measurement, we can use the same prior and
the same model as in our first example in the OPM section 11.1:

> prior<-list(G=list(G1=list(V=1,nu=0.02)),R=list(V=1,nu=0.02))

> model_pois<-MCMCglmm(phen_pois~cofactor,random=~phylo,

family="poisson",ginverse=list(phylo=phylo.inv$Ainv),

prior=prior,data=data,nitt=5000000,burnin=1000,thin=500)

Note that we are now using family="poisson", which automatically assumes
the canonical logarithmic link function. We can now print the summary of
the results:

> summary(model_pois)

Iterations = 1001:4999501

Thinning interval = 500

Sample size = 9998

DIC: 690.3027

G-structure: ~phylo

post.mean l-95% CI u-95% CI eff.samp

phylo 0.04032 0.002295 0.1094 9998

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

units 0.04206 0.002638 0.09635 9482

Location effects: phen_pois ~ cofactor

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) -2.0849 -2.5007 -1.6930 9667 <1e-04 ***

cofactor 0.2508 0.2287 0.2732 9998 <1e-04 ***

As we can observe, random effects variances and fixed effects values are low.
This is partly due to the assumed logarithmic link function which “impose”
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low values for the latent trait l (see Eqs. 14 and 15 in the main text). How-
ever, the fixed effects are significantly different from zero (pMCMC< 10−4).

Generally, fitting the generalised phylogenetic mixed model using an
MCMC algorithm is not much harder than fitting the Gaussian one. However
one can encounter several issues. First, the algorithm will be slower for non-
Gaussian traits. Second, issues due to auto-correlation might arise, so that
one will be forced to run the algorithm for longer. Third, as noted above,
the overall expected variances can be much smaller than for Gaussian traits
(e.g. for binary and Poisson traits). In this case, issues related to the choice
of the prior can arise, especially for small datasets. This is due to the fact
that most variance priors (including those available in MCMCglmm) are a
bit informative for small variances.

11.5 An example with MAR comparative data

Sources
ape{R} (Paradis et al, 2004)
MCMCglmm{R} (Hadfield, 2010a)

Data
data_pois_missing.txt Data frame containing the count phenotypic data

with missing values
phylo.nex Phylogeny file (NEXUS file)

We will use the same data set as in the OPM section 11.4, but this time,
we are missing one half of trait data phen_pois (100 out of 200 species).
However, we have a complete data set for the cofactor, which, in this case,
was related to missingness; we deleted the 50 trait values that had the 50
lowest values for the cofactor. Therefore, missing data in this data set is
MAR. Let’s look at the data:

> data<-read.table("data_pois_missing.txt",header=TRUE)

> head(data)

phen_pois cofactor phylo

1 NA 7.8702830 sp_1

2 NA 3.4690529 sp_2

3 NA 2.5478774 sp_3

4 14 18.2286628 sp_4

5 NA 2.5302806 sp_5

6 NA 0.5145559 sp_6

>

NA indicates missing values. It is almost too easy to run a model dealing with
missing data in the response variable. We just run an identical model as in
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the OPM section 11.4. The only difference is that we will use the default
node="ALL" rather than node="TIPS":

> inv.phylo<-inverseA(phylo,nodes="ALL",scale=TRUE)

> prior<-list(G=list(G1=list(V=1,nu=0.02)),R=list(V=1,nu=0.02))

> model_missing<-MCMCglmm(phen_pois~cofactor,random=~phylo,

family="poisson",ginverse=list(phylo=phylo.inv$Ainv),

prior=prior,data=all,nitt=5000000,burnin=1000,thin=500)

> summary(model_missing)

If you finish running this model, you will get this warning message:

Warning message:

In MCMCglmm(phen_pois ~ cofactor, random = ~phylo, family = "poisson", :

some combinations in phylo do not exist and 198 missing records have been generated

This is not the data augmentation we are intending to show, but MCMCglmm
is using its data augmentation technique to estimate all ancestral values at
the internal nodes of the tree (phylo) apart from the root7, assuming MAR8.
We now look at the output from this analysis:

> summary(model_missing)

Iterations = 1001:4999501

Thinning interval = 500

Sample size = 9998

DIC: 490.3962

G-structure: ~phylo

post.mean l-95% CI u-95% CI eff.samp

phylo 0.04045 0.002245 0.109 8700

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

units 0.03824 0.002411 0.08832 8938

Location effects: phen_pois ~ cofactor

post.mean l-95% CI u-95% CI eff.samp pMCMC

7 This tree phylo has 200 tips and so it has 199 nodes (nnode = ntip−1). MCMCglmm
augmented 198 missing values, which corresponds to 199− 1 nodes (the number of
nodes without the root).
8 MCMCglmm uses the MAR assumption in this case, by assuming missingness de-
pends on phylogeny (see section 3.2 in the main text).
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(Intercept) -2.0548 -2.6662 -1.4252 9126 <1e-04 ***

cofactor 0.2495 0.2123 0.2836 9142 <1e-04 ***

Compare the estimate of cofactor between this and one in the OPM section
11.4 (0.2508, 95% CI = 0.2287 to 0.2732). Notably, in this MAR missingness
in the bivariate data context, complete-case analysis will not result in biased
estimates; this is shown in Nakagawa and Freckleton (2008). Thus, we will
not run such analysis.
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