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1 Preamble

1.1 Why this tutorial?

This tutorial is intended for students or researchers in the domain of evolutionary ecology,

interested in using the animal model to estimate the heritability of biological traits in a wild

population. It aims at bringing theoretical and practical help on three main issues: (i) under-

standing what heritability is, what it quantifies and how the animal model works; (ii) learning

by practice how to implement animal models using the MCMCglmm R package; and (iii) in-

troducing Bayesian statistics (priors, Markov Chain Monte Carlo, etc.). The author tried to

use examples of increasing complexity to show best as well as most tedious aspects of MCMC

estimation methods. Finally, although this tutorial is directly inspired from J. Hadfield course

notes (Hadfield 2010), it tries to bring new information more focused on heritability estimation

and good use of MCMC.

1.2 Prior knowledge

The reader is assumed to have an average knowledge of Evolutionary Biology and its prob-

lems, along with some notions of quantitative genetics. He is also assumed to have a basic

understanding of statistical mixed models framework and its associated vocabulary (fixed and

random effects especially) and to have some familiarity with their formulation. A vague knowl-

edge of Bayesian statistics and a familiarity with the R statistical software are needed for a

correct understanding of the Part 4, but not for the Parts 2 and 3.

2 What is heritability?

2.1 Definition

Let’s study a phenotypic trait in a given wild population. This trait varies among individuals,

each having a more or less different value from the others. This variation is quantified by a

variance (called phenotypic variance or VP ). It originates from different sources, but in a

schematic way, we will state it has a genetic component VG and an environmental component

VE:

VP = VG + VE (1)

The genetic variance itself originates from different sources. To keep it simple we will assume an

additive component VA (i.e. the effect“one by one”of the transmitted alleles) and a non-additive

component VNA (dominance effects, epistasis, etc.). We thus write:

VP = VA + VNA + VE (2)
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The interest of that variance decomposition lies in the fact that VA stands for the part of

phenotypic variability which is actually transmitted to the descendants (that is to say, at the

level of the whole population). For natural selection to have an effect, a part of the phenotypic

variability, on which it acts, must be “transmittable” (we say that the trait is heritable).

Thus we introduce a quantity, called heritability, which allow us to measure how much the

phenotypic variability of a trait in a given population is likely to be transmitted to the descen-

dants. The heritability h2 is defined (stricto senso) as the contribution of additive variance into

the variability of the phenotype. Using previous notations :

h2 =
VA
VP

(3)

The heritability has a value that lies between 0 and 1.

2.2 A few words

� Heritability is not heredity! Heredity is the transmission of a phenotypic value from a

parent to his offspring, while heritability is the transmission of the phenotypic variability

within a population from generation to generation. For example, the number of legs

in Human has a no heritability (any variation would be environmental), but is totally

hereditary.

� It is important to stress that the heritability of a trait is defined for a given population

at a given time. This quantity can vary between populations, and from time to time.

� A weakly heritable trait is not more likely to not be selected. The biological traits that

are the closest to fitness have most of the time a small heritability (Mousseau & Roff

1987).

2.3 Possible biases on heritability

A bias on heritability can originates from “artefactual” resemblance between individuals, which

could be misinterpreted as additive genetic effect. We thus need to get rid of two main sources

of nuisance: the rest of the genetic effects (link to a correct estimation of VNA) and the envi-

ronmental effect.

2.3.1 Genetic nuisance

They are mainly linked to dominance effects and epistasis, which, if they are badly accounted

for, can lead to an overestimation of heritability. Hopefully, some methods are not sensitive to
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dominance effects (see Part 2.4). Epistasis is a more complex and generalized issue, but it is a

second order effect which is generally neglected by the models. Inbreeding can also lead to an

overestimation of heritability, if not accounted for. There is also some factors that are hard to

take into account, such as linkage...

2.3.2 Environmental nuisance

They are of various type, yielding greater resemblance between individuals than expected based

on kinship. Among others:

� Common environment: Individuals in a common environment (birth spot, habitat, etc.)

are likely to show extra phenotypic resemblance.

� Parental effects: Some characters of parents (quality, immunity, etc.) can yield an extra

resemblance between their offspring and them; or more generally, extra resemblance within

their offspring, independently of their phenotypes1.

� Assortative mating: A tendency of individuals to mate with partners sharing the same

phenotype will lead to extra resemblance within their offspring.

From a practical point of view, the sensitivity to genetic effects (mostly dominance and

inbreeding) will depend on the approach used to measure heritability. Environmental effects

can sometimes be avoided with a careful design. The animal model approach allows to integrate

some of theses effects in the model.

2.4 Which approach to measure heritability in the wild?

Sibling design This approach use the kinship between siblings in order to measure heritabil-

ity. An ANOVA model compares the within-family variance to the inter-family variance to

estimate heritability. Because of an experimental protocol difficult to apply in wild population

and an annoying sensitivity to dominance and common environment effects, this approach is

less used in wild animal population. It is however to be noticed that the half-sibling design

approach is not sensitive to dominance effects, but require some methodological conditions

(certain identification of both parents, polygamy or sequential monogamy, etc.).

Parent-offspring regression This approach uses the regression of the phenotype of the

mid-parent (or one of the parents) on the mean phenotype of the offspring. Well studied, its

properties are well-known (Falconer & Mackay 1996, Roff 1997, Lynch & Walsh 1998). This

approach is not sensitive to dominance effects, but ignore issues link to inbreeding. More over,

1The difference is important, since the former kind is what most biologists have in mind, whereas only the
last kind can be modelized using the animal model, see Part 3.3.
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although a correction exists concerning assortative mating (Falconer & Mackay 1996, p.178),

the parent-offspring regression remains sensitive to common environment between parents and

offspring (territory inheritance, weak dispersal, etc.) and to transgenerationnal parental effects

(i.e. parental effects which depend on the phenotype of the parent).

Animal model The animal model is a more complex approach, in the sense that it doesn’t use

only one kind of kinship, but the whole pedigree of the population. It thus uses the maximum

of information available, and to take into account inbreeding. It is a mixed model and thus can

take into account several factors (mostly environmental) in order to avoid biases described in

Part 2.3. We will focus on this approach in the following parts.

3 The animal model in theory

3.1 Basic principle

The animal model uses a pedigree of the wild population. Such a pedigree indicate the father

(or sire) and mother (or dam) for each individuals, like in the following array:

individual mother father

1 A1 NA NA

2 A2 NA NA

3 A3 NA NA #NA stands for Not Available value

4 A4 NA NA

5 A5 A2 A4

6 A6 A1 A3

7 A7 A1 A3

8 A8 A1 A3

9 A9 A2 A4

10 A10 A2 A4

The individuals for which both the father and the mother are unknown are called founders.

They generally are individuals from the beggining of the survey or immigrants. The founders

are assumed unrelated to each others. This kind of pedigree allows the calculation of kinship

among all individuals of the population:

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 1 0 0 0 0 1/2 1/2 1/2 0 0

A2 0 1 0 0 1/2 0 0 0 1/2 1/2

A3 0 0 1 0 0 1/2 1/2 1/2 0 0

A4 0 0 0 1 1/2 0 0 0 1/2 1/2

A5 0 1/2 0 1/2 1 0 0 0 1/2 1/2

A6 1/2 0 1/2 0 0 1 1/2 1/2 0 0

A7 1/2 0 1/2 0 0 1/2 1 1/2 0 0

A8 1/2 0 1/2 0 0 1/2 1/2 1 0 0
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A9 0 1/2 0 1/2 1/2 0 0 0 1 1/2

A10 0 1/2 0 1/2 1/2 0 0 0 1/2 1

Note that, except for founders, the diagonal elements are not always 1, particularly in presence

of inbreeding. This matrix is the additive genetic variance-covariance matrix A. It is included

in a random or mixed model in order to estimate its associated variance component VA (i.e.

additive genetic variance). These kind of models are called animal models.

3.2 Model description

Let’s have several measures of a phenotype y on n individuals, during a given period and

in a given wild population. These measures are gathered in a vector Y =


y1
...

yn

. These

data are given along a pedigree of the population containing informations for all n measured

individuals. Our aim is to separate the variation of the Y data between an additive genetic

variance VA and the“rest” (often too quickly assimilated to environmental variance). In order to

do that, we will consider the phenotype yi of the individual i as a variation around the average

population phenotype µ in function of the pedigree of the individual and its environment or

other uncontrolled factors. We thus write:

yi = µ+ ai + ei (4)

In this equation, µ stands for the average population phenotype. ai is called the breeding value

and accounts for the influence of the additive effect of the alleles on the phenotype. ei is a

residual accounting for the rest of the possible variation.

We still need to define the distribution of the breeding values ai and residuals ei (µ is a simple

constant). The breeding values are assumed normally distributed:
a1
...

an

 ∼ N (0; AVA) (5)

Let’s recall here that A is the additive genetic matrix, and is related the population pedigree.

VA is the additive genetic variance we are looking to estimate here, in order to estimate the

heritability of the trait. The residuals ei are also normally distributed:
e1
...

en

 ∼ N (0; IVR) (6)
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where I stands for the identity matrix and VR is the residual variance.

From equations 4, 5 and 6, the key assumptions of the animal model are:

� The Y trait is normally distributed (this assumption can be drop using generalized models)

� The breeding values ai are normally distributed and correlated among related individuals.

The function of the pedigree is to structure the correlation between individuals by taking

into account their kinship.

� The residuals ei are normally distributed and uncorrelated. They also are independent

from the breeding values (e.g. no environment-genotype interaction).

The main outputs of the animal model are an estimate of the additive variance V̂A and

an estimate of the residual variance V̂R. These two variance components sum to the total

phenotypic variance VP . We thus estimate the heritability as:

ĥ2 =
V̂A

V̂A + V̂R
(7)

3.3 Going further into the model

3.3.1 Adding random effects

In order to account for some possible biases (common environment, parental effects...), it is

possible to add random factors in the model. When those random factors (F1, ...,FK) are

added, they have to be taken into account for the calculation of the total phenotypic variance,

such as:

ĥ2 =
V̂A

V̂A + V̂F1 + ...+ V̂FK
+ V̂R

(8)

It is not advised to add too many factors, since it could cause tedious instability in the estimation

of variance components.

Parental effects Including the identity of the parents (or only one parent) as a random effect

allows to account for possible parental effects. However, it has to be stressed that, included

that way, parental effects only take into account the resemblance among siblings from the

same parents, but in no way the resemblance between parents and offspring! For example,

one famous maternal effect is the quality of mother’s milk in mammals: mothers of the best

phenotypic “quality” are supposed to give the best milk, which in turns help her offspring to

grow healthy. In this context, including the identity of the mother into the model will state

that the offspring of a same mother are likely to develop a close phenotype because of the more

or less good quality of the mother’s milk, but it doesn’t imply any resemblance between the
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‘quality’ of the mother and her offspring. In other words, the parental effect is independent

from the parental phenotype (this a non transgenerationnal effect)! A kind of parental effects

in animal models that are transgenerationnal are genetic parental effects (see Wilson et al.

2010, for example). This effect assume a hypothetical ‘maternal performance’ trait which is

a summary of potential maternal traits acting on the offspring’s phenotype and is heritable.

Including a fully parametrized parental effect (including measured maternal traits acting on

offspring’s phenotype) is not straightforward using animal model, but a more general type of

models exists that allow for this (Kirkpatrick & Lande 1989, Räsänen & Kruuk 2007, Day &

Bonduriansky 2011).

Dominance effects Dominance effects are problematic only through a supplementary cor-

relation among full-sibs. Since the animal model uses all kind of relationships, it is sensitive

to dominance effects, especially if the pedigree contains large siblings groups. A dominance

matrix is not necessarily difficult to construct, but the calculation has to be made before the

use of MCMCglmm (see Part 4.7).

Repeated measures If repeated measures on individuals are available, it is possible to es-

timate what is called a permanent environment effect, by including the identity of individuals

as a random effect. This allows to take into account intra-individual variations and possible

measurement errors. The permanent environment effect also accounts for a part of the non-

additive genetic effects (but doesn’t account for the whole dominance effect for example!). It

is important to realize that the total phenotypic variances VP are not comparable between a

design using repeated measures and mean value for each individual (taking the mean reduces

VP ).

3.3.2 Adding fixed factors

The animal model is in essence a mixed model, allowing also for fixed effects. It can be

interesting to add fixed factors to the model, in order to account for some biological or design-

related issues likely to bias our heritability estimation. However it is necessary to recall that

including a fixed factor in a model involve the reduction of the residual variance. Each added

fixed effect thus possibly involves an artificial raise of the heritability. The aim behind the

heritability estimation thus need to be closely examined before adding any fixed effect in the

model. For more information about this issue, see the publication of Wilson (2008).

3.3.3 Generalizing the model

Just as the mixed models can be generalized in Generalized Linear Mixed Models (GLMMs), it

is possible to generalize the animal model to fit several statistical distributions. Various things
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are possible, but we will there focus on binary distribution. In that case, the model is defined

on an underlying latent variable l (this is equivalent to a threshold model):

li = µ+ ai + ei (9)

We then use a probit link and a binomial distribution to fit binary data:

Yi ∼ B(probit−1(li)) (10)

All this is quite common for binary GLMM. However, when calculating heritability, it is neces-

sary to take into account a supplementary source of variance coming from the probit link2. We

thus have:

ĥ2 =
V̂A

V̂A + V̂R + 1
(11)

3.4 Pros and cons

More statistical power, more flexibility... Using the entire pedigree of the population,

the animal model has better resources toward a precise estimation of the heritability than

the parent-offspring regression. It is also more accurate by taking into account inbreeding

and any selection event occurring “since” the founders. Adding random effects also allows for

explicitly model dominance effects, common environment effects (nest, habitat, year...) or (non

transgenerationnal) parental effects. A multivariate variant is also available, yielding genetic

covariance between several traits.

...but everything is not perfect! The fact that animal model use the whole range of

relationship in the population is its strength, but also its weakness. For example, the parent-

offspring regression is only based on“vertical”relationships between individuals and thus ignores

any non transgenerationnal effects: a dominance effect or a non transgenerationnal parental

effect will induce no bias on heritability estimation3. As a consequence, it is highly important

to properly think about all different sources of effects likely to induce a bias on heritability and

(if the data structure is sufficient) to indicate them to the model using random effects. It is

also important not to neglect simpler approaches such a parent-offspring regression (or half-sibs

design if possible), at least as a checking step!

2This is justified by the fact that, to be strictly equivalent to a threshold model (where Y is 1 if l > 0), we
need to include the “variance” of the link transformation into the total variance, which is 1 for a probit link and
π2

3 for a logit link.
3This reasoning is valid in the “horizontal” direction for the half-sibs design.
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4 The animal model in practice using MCMCglmm

4.1 Some notions about Bayesian statistics

This section does not aim to be a lecture about Bayesian inference. However some basics are

needed for a proper use of the MCMCglmm package. The output of a Bayesian inference is

posterior distribution, i.e. a probabilistic distribution associating each value of a parameter to

a probability (or degree of belief). The inference model is made of a likelihood function (in

everything identical to the “classical” frequentist counterpart) and a prior distribution of the

parameter(s) to be estimated. The likelihood model has been described in the previous section,

we just need to choose the prior distributions for the parameters to be estimated. For more

information about Bayesian and MCMCglmm, I advised the reader to consult Jarrod Hadfield’s

course notes, who developed the package.

What is MCMC estimation method? The aim of the MCMC algorithm (Markov Chain

Monte Carlo) is to approximate the posterior distribution of the parameters. To do so it uses an

algorithm based on the proposal, at each step, of a new value for a parameter, as a function of

the value of the other parameters. After a convergence phase (often rather small), the MCMC

algorithm tends to propose values within the posterior distribution of the parameters. Saving

the value of the parameter at each iteration (or a subset, see later), we get a series of values

drawing the posterior distribution of interest (just as a series of normally distributed values

draw the famous bell curve). In order to get a good picture of this posterior distribution,

we thus need a rather large set of draws (say 10,000), for which the correlation is negligible.

Indeed, the successive iterations of the MCMC algorithm have the annoying tendency to be

correlated from one to another. This is due to the fact that the proposal of a new value is based

on the current value of the other parameters. This autocorrelation reduce the effective size of

our sample. The effective size is the size of an uncorrelated sample (all draws are independent)

equivalent to ours. For example, 10,000 draws highly correlated might have an effective size of

100 (i.e. they are equivalent to 100 independent draws). Since the iterations are correlated with

those in proximity, we pick up in advance a thinning interval which reduces the autocorrelation

(for example, we choose to keep only one iteration value every 10 iterations). This allows to

spare memory and lightens further analysis. To put it in a nut shell, there are two important

issues to monitor when using the MCMC:

� The convergence: It is important to check we waited long enough for the convergence

(often called the burn-in period) to actually happen, before saving iteration values. Un-

fortunately, there is no way to tell in advance how long the burn-in has to be, so post hoc

checks are used.
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� The autocorrelation: In order to avoid autocorrelation issues (and mostly to lighten mem-

ory usage), it is possible to use a thinning interval. This way, we get a better effective

sample size.

4.2 Choosing a prior distribution

4.2.1 What is a good prior?

A good prior distribution is often a non informative one, which means that the prior should not

influence the estimated posterior distribution. In most cases, ‘flat’ priors check this criterion,

but it is not a golden rule. It is actually quite difficult, without a prior sensitivity study, to

predict the influence of the prior. Fortunately, the strength of the prior fades away whith the

sample size of the data: with sufficient sample size, this prior issue becomes negligible.

For the definition of priors, the MCMCglmm package has specific distributions already imple-

mented.

4.2.2 Prior distribution for a random effect variance

Regarding the prior distribution of variances, MCMCglmm uses an inverse-Gamma distribution,

which is a common choice. In the package, the distribution is parametrized by two parameters

nu and V4. A possible set of parameters would be nu = 0.002 and V = 1 (Fig. 1). Indeed, it

allows for a weakly informative prior on variance components and U-shaped prior (with a very

steep shape on the borders in 0 and 1) on the heritability. This choice is obviously not the only

one, but it has the quality of being ‘classical’ ( though not appropriate for too small variances,

see Gelman (2006)) and generally weakly informative. To define this prior on variances using

MCMCglmm, we use an R list as follows:

prior <- list(R = list(V=1, nu=0.002), G = list(G1 = list(V=1, nu=0.002)))

In this list, the R argument stand for the prior on the residual variance. The G (itself a list) is

for random effects variance (called G1, G2, etc.). In presence of 3 random effects in the model,

we need to define 3 priors in G:

prior <- list(R = list(V=1, nu=0.002), G = list(G1 = list(V=1, nu=0.002),

G2 = list(V=1, nu=0.002), G3=list(V=1, nu=0.002)))

4.2.3 Prior distribution of fixed effects

Regarding the prior distribution of fixed effects, the package defaults to a very wide Normal

distribution, which is a relevant and consensual choice we don’t need to argue or customize

further.
4On the Wikipedia website, the inverse Gamma is parametrized differently using α and β notations. Since

MCMCglmm notations are not usual, here are their ‘translation’: α = nu
2 and β = nu×V

2 . Thus, a distribution
parametrized by nu = 0.002 and V = 1 is actually an inverse Gamma(0.001; 0.001).
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Figure 1: Shape of inverse Gamma(0.001; 0.001) prior distribution on variance components (left) and induced
shape of the prior for heritability (right).

4.3 MCMCglmm() function parameters

4.3.1 Setting up the pedigree

For MCMCglmm() to work properly, we need to provide it with a data frame describing the

population pedigree of that kind:

pedigree <- read.table("pedigree.txt", header = T)

headtail(pedigree)

animal sire dam

1 1 <NA> <NA>

2 2 <NA> <NA>

3 3 <NA> <NA>

4 4 <NA> <NA>

... ... ... ...

997 997 816 831

998 998 794 852

999 999 837 871

1000 1000 767 845

The first column has to be named animal. The founders (whose father and mother are un-

known) must be placed of the top of the array, because a reproductive individual must appear

before its offspring. The function allows for pedigree with missing parents (with NA in place of

the parent’s ID).

The data are also stored in a data frame:
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data <- read.table("data.txt", header = T)

headtail(data)

animal phen

1 1 12.84

2 2 10.47

3 3 12.44

4 4 10.59

... ... ...

997 997 10.28

998 998 10.13

999 999 11.13

1000 1000 11.72

The column animal does not have to be ordered as in the pedigree. Phenotypic data are here

stored in the phen column.

4.3.2 How to use MCMCglmm() function?

In order to fit a simple model, where we only estimate additive and residual variances, we call

the function likewise:

prior <- list(R = list(V=1, nu=0.002), G = list(G1 = list(V=1, nu=0.002)))

model <- MCMCglmm(phen ~ 1, random = ~animal, family = "gaussian",

prior = prior, pedigree = pedigree, data = data, nitt = 100000,

burnin = 10000, thin = 10)

The fist argument phen ~ 1 is a R formula giving the response variable (phen) according to fixed

factors (here only the population mean µ of the trait). The argument random = ~animal set

the random effects: animal is a reserved variable to fit an additive genetic effect (in other words,

we are stating the model we want to estimate VA). The argument family set the distribution

to use for the data (here gaussian for a normally distributed trait). The argument prior calls

the list of parameters for prior distributions stored in the variable prior. Arguments pedigree

and data speak for themselves. Finally, the three last arguments are to set up the properties of

the MCMC: nitt is the total number of iterations, burnin is the number of iterations to drop

at the beginning (convergence) and thin is the number of iterations stored in memory (here,

one every ten iterations).

4.4 Results and diagnostic of the MCMC output

4.4.1 Calling the function

The function is called likewise:
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prior <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1,

nu = 0.002)))

model <- MCMCglmm(phen ~ 1, random = ~animal, family = "gaussian",

prior = prior, pedigree = pedigree, data = data, nitt = 100000,

burnin = 10000, thin = 10)

MCMC iteration = 0

MCMC iteration = 1000

MCMC iteration = 2000

MCMC iteration = 3000

... ...

MCMC iteration = 99000

MCMC iteration = 100000

Don’t forget to store the output of the function in a variable (here model), in order to have

access to it afterwards. The computation might take some time (even quite a long time),

depending of the data, the parameters and, of course, the computer capacities.

4.4.2 Diagnostic of the MCMC

Before even looking at the estimates, the first thing to do is to check the behaviour of our

MCMC algorithm. To do so, we need to focus on convergence and autocorrelation of our

‘chain’ of samples. The output model has two main components, which are model$Sol and

model$VCV (respectively for fixed effects and random effects variances). First of all, let’s look

at the ‘trace’ of our ‘chain’ (Fig. 2):

plot(model$Sol)

plot(model$VCV)

Each of the three couples of graphs shows us the trace (left), i.e. the evolution of the sampled

values along the iterations. It allows us to check the convergence (we should not see any trend

in the trace) and that autocorrelation is weak (the values are widely spread). On the right

of these graphs, we have an estimation of the posterior density function for each component

(Intercept, animal and units). We can also have a look at the autocorrelation:

autocorr.diag(model$Sol)

(Intercept)

Lag 0 1.0000000000

Lag 10 0.0157137339

Lag 50 -0.0035557380

Lag 100 -0.0013154271

Lag 500 0.0004660904

autocorr.diag(model$VCV)

animal units

Lag 0 1.00000000 1.0000000000

Lag 10 0.40759941 0.2729110582

Lag 50 0.02437235 0.0109679990

Lag 100 0.01591581 0.0043086559

Lag 500 0.01007559 0.0001932177
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Figure 2: Trace of the mean µ (or intercept, left) and the variances (right). The term animal refers to VA and
the term units refers to VR.

Here Lag 10 stands for ‘autocorrelation every 10 iteration values’. Since our thin parameter

was 10, this refers actually to the correlation of every sampled value with the following one.

We can see that there little autocorrelation on the mean (Intercept). On the contrary, the

autocorrelation on variance components becomes negligible only with a lag of 50. Theoretically,

it should be good to re-run a longer MCMC to increase the effective sample size. In practice,

an autocorrelation less than 0.1 for the first Lag (i.e. from one sampled value to the other) is

reasonable. Autocorrelation per se is not really an issue, but it does shrink the effective sample

size. Let’s check this out:

effectiveSize(model$Sol)

(Intercept)

8720.559

effectiveSize(model$VCV)

animal units

3787.308 4747.467

We see that the effective sample size of the mean (Intercept) is larger than the effective sample

size for variance components, for which the autocorrelation is greater. We need to recall how

important is the effective size parameter: the aim of our sample (or ‘chain’) is to estimate
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the posterior distribution of the parameter of interest. To do so, we need the largest number

of independent values as possible, which means a large effective sample size. In practice, an

effective size above 1,000 is recommended, 10,000 being a quite comfortable goal. Here, we

get medium effective size. The autocorrelation is still a bit too strong, but considering the

shape of traces and posterior density (Fig. 2, the curves are relatively symmetrical, unimodal

and not aberrant), we will content ourselves with it for this tutorial. For more confidence in

our estimates, we could run the MCMC for a longer number of iterations (nitt), and maybe

increase the thin parameter a bit to save memory. This would help to get a larger effective

sample size.

Using MCMCglmm, the convergence is often really fast. Here, it happens from the very first

iterations (Fig. 3):

modelburnin <- MCMCglmm(phen ~ 1, random = ~animal, family = "gaussian",

prior = prior, pedigree = pedigree, data = data, nitt = 5000,

burnin = 1, thin = 1)

plot(modelburnin$VCV)
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Figure 3: Trace of the variances with only 5000 iterations.

Note that there is diagnostic tests of convergence, as the Heidelberg stationarity test (here, to

bend the rules, the p-values must exceed 0.05):

heidel.diag(model$VCV)

15



Stationarity start p-value

test iteration

animal passed 1 0.613

units passed 1 0.993

Halfwidth Mean Halfwidth

test

animal passed 1.048 0.00416

units passed 0.999 0.00242

These tests do not however spare one of a graphical check using the trace and certainly not

from an autocorrelation study (convergence and autocorrelation issues are separate!).

4.4.3 Results from a MCMC algorithm

The output of the MCMCglmm() function has the following structure:

summary(model)

Iterations = 10001:99991 #MCMC parameters

Thinning interval = 10

Sample size = 9000 #Actual sample size (not effective)

DIC: 3203.707 #Somewhat like AIC

G-structure: ~animal #Random effects section

post.mean l-95% CI u-95% CI eff.samp

animal 1.048 0.7683 1.334 3787 #Here is an effective sample size

R-structure: ~units #Residual variance section

post.mean l-95% CI u-95% CI eff.samp

units 0.9989 0.8256 1.178 4747

Location effects: phen ~ 1 #Fixed effects section

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 10.13 9.91 10.35 8721 <1e-04 ***

The first part reminds us the characteristics of the sample. Then, the function gives the DIC

(Deviance Information Criterion) associated to the model. This DIC may be used for model

selection, like the AIC. Be careful however, because the behaviour of this statistical tool has

still to be precisely evaluated. The rest of the output is separated into three sections: the first,

G-structure, informs us about the variance estimates of the random effects (here, we only

have VA, called animal); the second, R-structure, is about the residual variance estimation
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(VR here called units); and the third section, Location effects, gives us the results regarding

the fixed effects (here only the population mean µ called Intercept).

Concerning the two first parts, we get various information about our estimations. The column

gives us the posterior mean of the posterior distribution (actually, it is simply the mean of the

MCMC sample). However, it has to be noted that the median is sometimes a better summary

statistics than the mean, especially for very asymmetric posterior distribution. We then have

the lower and upper limits of the 95% credible interval (i.e. our parameter has a posterior

probability of 0.95 to lie within this interval). Finally, the function gives us the effective sample

size associated to the parameter. Concerning the fixed effects, we have the same information

plus a pMCMC column. This latter is the posterior probability associated to the event: “the

parameter is not different from zero”5. It is not a p-value, but provides the same kind of

information. Here, the pMCMC is very weak indicating that the population mean is very different

from zero (which also makes sense when looking at the credible interval).

4.5 Computation of heritability estimate

One big advantage of the MCMC is the possibility to straightforwardly compute the posterior

distribution of any function of the variance components. Thus we have a simple way to obtain

the posterior distribution of the heritability:

herit <- model$VCV[, "animal"]/(model$VCV[, "animal"] + model$VCV[, "units"]) $

We can then use all the tools we just mentioned on the heritability:

effectiveSize(herit)

var1

3494.684

mean(herit)

[1] 0.5104629

HPDinterval(herit) #Display 95% credible interval

lower upper

var1 0.4062324 0.6104063

attr(,"Probability")

[1] 0.95

We can also plot the trace and the density function using plot() (Fig. 4). The heritability of

the trait phen is about 0.51 with 95% of probability to lies between 0.40 and 0.61.

5To be precise, the event is “the parameter is negative” if the posterior mean is positive and “the parameter
is positive” if the mean is negative.
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Figure 4: Trace (left) and posterior density (right) of the heritability.

4.6 Adding random effects

We will here use a common environmental effect, the breeding location (here called patch) of

the individuals:

pedigreeEC <- read.table("pedigreeEC.txt", header = T)

dataEC <- read.table("dataEC.txt", header = T)

head(dataEC)

animal phen patch

1 1 10.245 P18

2 2 9.785 P12

3 3 13.386 P25

4 4 10.571 P18

5 5 8.278 P5

6 6 8.444 P23

Because of a dispersal rate of 50%, the individuals have one chance over two to breed in the same

patch as their parents. Yet the characteristics of the patch have an effect on their phenotypes

(say a spatial variability makes some patches better than others in terms of resources). We can

first look into what happens if we ignore this effect:
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prior <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1,

nu = 0.002)))

modelnaif <- MCMCglmm(phen ~ 1, random = ~animal, family = "gaussian",

prior = prior, pedigree = pedigreeEC, data = dataEC, nitt = 1e+05,

burnin = 10000, thin = 10)

After all the usual checks (!!), we calculate the heritability:

heritnaif <- modelnaif$VCV[, "animal"]/(modelnaif$VCV[, "animal"] + $

modelnaif$VCV[, "units"])

We can then compute the posterior mean and credible interval:

mean(heritnaif)

[1] 0.6419418

HPDinterval(heritnaif)

lower upper

var1 0.5537633 0.7365198

attr(,"Probability")

[1] 0.95

So, here we estimate a heritability around 0.64. The value 0.5 does not even lie within the

credible interval. However, when we add the patch random effect into the model (without

forgetting to change the priors to include a new variance component!):

prior <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1,

nu = 0.002), G2 = list(V = 1, nu = 0.002)))

modelEC <- MCMCglmm(phen ~ 1, random = ~animal + patch, family = "gaussian",

prior = prior, pedigree = pedigreeEC, data = dataEC, nitt = 1e+05,

burnin = 10000, thin = 10)

We still do the usual checks and calculate the heritability including the patch effect:

heritEC <- modelEC$VCV[, "animal"]/(modelEC$VCV[, "animal"]

+ modelEC$VCV[, "units"] + modelEC$VCV[, "patch"])

We here see that the heritability is estimated around 0.5 (which is the actual value used to

simulate data):

mean(heritEC)

[1] 0.5200806

HPDinterval(heritEC)

lower upper

var1 0.4070969 0.6282084

attr(,"Probability")

[1] 0.95

Through this little example, we can see the importance of a well defined model, including all

the environmental effects (and other kinds!) to correctly estimate heritability.
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4.7 Adding a dominance effect

4.7.1 Computation of the dominance matrix D

When we specify a random effect to the function MCMCglmm(), this last one compute itself

the corresponding variance-covariance matrix. For example, using the pedigree, the function

automatically computes the inverse of the additive genetic matrix A corresponding to the

animal effect. Yet nothing is implemented in the function to calculate the variance-covariance

matrix associated to a dominance effect. We thus have to compute ourselves this dominance

matrix. In absence of inbreeding, this matrix is made of 1 on the diagonal, 0.25 when individuals

of the row and the column are full-siblings and 0 elsewhere. Note that, from the dominance

perspective, parent/offspring and half-sibling relationships are null (such that only full-siblings

matter)6. In order to compute this dominance matrix, a R package exits, called nadiv and

developed by Wolak (2012):

pedigreedom<-read.table('pedigreedom.txt',header=T)

library(nadiv)

listD<-makeD(pedigreedom)

[1] "starting to make D"

[1] "D made"

[1] "starting to invert D"

[1] "done inverting D"

Dinv<-listD$Dinv $

We obtain the Dinv matrix (i.e. the inverse of the dominance matrix). The non inverse

dominance matrix can be obtained using listD$D. Here, the data have a supplementary column,

identical to the animal column:

datadom<-read.table('datadom.txt',header=T)

headtail(datadom)

animal dom phen

1 R187557 R187557 10.69

2 R187559 R187559 11.21

3 R187568 R187568 12.17

4 R187518 R187518 11.59

... ... ... ...

1037 R187732 R187732 11.14

1038 R187073 R187073 8.47

1039 R187905 R187905 9.35

1040 R187002 R187002 13.55

6Actually, double first cousins have a dominance correlation of 1
16 , but they are quite improbable in nature.
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4.7.2 How to implement dominance effects in MCMCglmm?

To implement dominance effects, we use the argument ginverse of the function MCMCglmm(),

which allows to ‘customize’ a variance-covariance matrix associated to a random effect. We link

the Dinv matrix to our dominance effect:

prior<-list(R=list(V=1,nu=0.002),

G=list(G1=list(V=1,nu=0.002),G2=list(V=1,nu=0.002)))

modeldom1<-MCMCglmm(phen~1,random=~animal+dom,ginverse=list(dom=Dinv),

family="gaussian",prior=prior,pedigree=pedigreedom,data=datadom,

nitt=100000,burnin=1000,thin=10)

Note that the data have a dom column identical to the animal column. This former is needed

for the function what dom refers to here. However, a quick look at the results shows a slight

issue:

summary(modeldom1)

Iterations = 1001:99991

Thinning interval = 10

Sample size = 9900

DIC: 3490.966

G-structure: ~animal

post.mean l-95% CI u-95% CI eff.samp

animal 1.811 1.126 2.499 1705

~dom

post.mean l-95% CI u-95% CI eff.samp

dom 0.5699 0.0002564 1.921 25.19

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

units 1.45 0.007292 2.132 28.4

Location effects: phen ~ 1

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 9.968 9.763 10.189 9613 <1e-04 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Here, contrary to the previous cases, the autocorrelation becomes so huge that the effective

sample size of our variances are ridiculously small (almost 10,000 iterations for only 25 inde-

pendent values!). A glance at the trace of the MCMC gives us a clue about what is going on

(Fig.5, left): sometimes the dominance effect variance (dom) or the residual variance (units)

get ‘stuck’ on zero... In this situation, the MCMC is, in a way, lacking of variance to change its

state and the autocorrelation increases a lot! We can see the effects on the posterior distribution

of both variances (Fig.5, left). Even for the residual variance, which is less ‘stuck’ in zero, we

see a secondary mode of density in zero. This is a perfect opportunity to show what happens

with a longer run. We will choose a thinning interval 50 larger (500) and let the MCMC run

for 500 times more iterations:

modeldom1<-MCMCglmm(phen~1,random=~animal+dom,ginverse=list(dom=Dinv),

family="gaussian",prior=prior,pedigree=pedigreedom,data=datadom,

nitt=50000000,burnin=1000,thin=500)
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Figure 5: Trace and posterior density of variance for the first (left) and second (right, with more iterations)
MCMC runs with dominance. The term animal refers to VA, dom to VD and units to VR.

The effective sample size is a bit more satisfying:

summary(modeldom2)

Iterations = 1001:49999501

Thinning interval = 500

Sample size = 99998

DIC: 2718.913
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G-structure: ~animal

post.mean l-95% CI u-95% CI eff.samp

animal 1.778 1.054 2.554 86135

~dom

post.mean l-95% CI u-95% CI eff.samp

dom 0.928 0.0001706 2.323 7522

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

units 1.161 0.0001896 2.052 7331

Location effects: phen ~ 1

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 9.965 9.750 10.180 1e+05 <1e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This example allows us to stress out the main drawbacks of the MCMC as an estimation

method. First, the comparison of the two summary shows how much the estimates might rely

on the fact that the MCMC works smoothly (we speak about good or poor mixing properties

of the MCMC chains). Importantly, the DIC is quite sensitive to a bad mixing (3490 for the

badly mixed chain against 2719 here). Second, it is really important to use everything to check

the mixing of the chain. Our effective size are comfortable, they however are to be compared to

other parameters’ (for example, animal has a far better mixing than units with 86,135 against

7331). The autocorrelation is indeed very high despite our efforts:

autocorr.diag(modeldom2$VCV) $

animal dom units

Lag 0 1.000000000 1.000000000 1.0000000000

Lag 500 0.014052835 0.694609597 0.7002058074

Lag 2500 0.003985196 0.392770278 0.3964285607

Lag 5000 0.007108644 0.236290457 0.2397001041

Lag 25000 0.001947910 -0.001554258 -0.0003827729

This autocorrelation is not without influence on our variances estimations (Fig.5, right). The

trace is here thicker, and it is difficult to distinguish if the variances get stuck in zero, but a

look at the posterior distributions (Fig.5, right) shows that letting the model run for longer did
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not change much this behaviour... Nevertheless, this example is a good demonstration of how

the autocorrelation might bias estimates in the MCMC!7

4.7.3 How to improve the mixing of our chains?

Adding a dominance effect certainly had complicated the model. However, the issue here raise

from two main sources. First, we used small variances (VA = 2, VD = 1 et VR = 1) to simulate

data. With larger variances, we might have not encountered this type of problems. Second, a

close population model has been used to simulate the pedigree, leading to a strong inbreeding,

which makes the dominance matrix more complex.

When such autocorrelation issues arise, is usual to change a bit the MCMC algorithm. Here,

using MCMCglmm, we are a bit limited, but it is possible to use the so-called parameter

extension (Gelman 2006) to allow for more flexibility during MCMC iterations. The idea

behind the parameter extensions lies into splitting the random effect ui into two independent

components:

ui = α ηi

with ηi ∼ N (0;Vη)
(12)

Doing so, we implicitly split the variance of the random effect u in two: Vu = α2Vη. We have

the following prior distributions for α and Vη:

α ∼ N (0;Vα)

Vη ∼ Inverse-Gamma(V; nu)
(13)

We are a bit technical here, but it is sufficient to keep in mind that we implicitly here define a

prior distribution on Vu such as Vu/Vα follows a Fisher distribution of degree of freedom 1 and

nu.

Our problem comes from the fact that our variances are weak. Indeed, the inverse-Gamma

distribution has the (really) tedious trends to ‘pull’ too strongly around zero. Yet, our new

‘Fisher’ prior puts less weight in zero. Better, the parameter extension allows the MCMC to

depart more easily from zero when it is stuck. Let’s try this new prior:

prior_ext<-list(R=list(V=1,nu=1),

G=list(G1=list(V=1,nu=1,alpha.mu=0,alpha.V=1000),

G2=list(V=1,nu=1,alpha.mu=0,alpha.V=1000)))

7It has to be noted here that reducing the autocorrelation by using a bigger thinning interval might not be a
good solution: indeed, if the MCMC get stuck in zero for the variances, then even in getting rid of most of the
iterations, we still will have an artificially high probability to sample near zero if we sample during a ‘stucked’
phase. Increasing the thinning interval will reduce the issue, but not overcome it!
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A few things. First, the parameter extension is not (yet) available for the residual variance.

However, we have fixed the nu parameter to 1 in order to put less weight in zero8. Regarding

the random effects, the parameter extension is defined by the parameters V and nu (pour Vη)

and alpha.mu and alpha.V (for α). Let’s look at the results obtained using this prior (with 5

times less iterations than for modeldom2):

modeldom3<-MCMCglmm(phen~1,random=~animal+dom,ginverse=list(dom=Dinv),

family="gaussian",prior=prior_ext,pedigree=pedigreedom,data=datadom,

nitt=10000000,burnin=1000,thin=500)

First, we observe that the estimates are closer to the simulated values, with correct effective

size:

summary(modeldom3)

Iterations = 1001:9999501

Thinning interval = 500

Sample size = 19998

DIC: 3487.879

G-structure: ~animal

post.mean l-95% CI u-95% CI eff.samp

animal 1.767 1.066 2.523 19998

~dom

post.mean l-95% CI u-95% CI eff.samp

dom 1.01 1.203e-08 1.954 16289

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

units 1.098 0.2538 1.948 16413

Location effects: phen ~ 1

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 9.962 9.756 10.184 20830 <5e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

These better results are explained by a weaker autocorrelation (but let’s keep in mind that the

thinning interval is 500 here):

8Beware! This prior is an inverse-Gamma(0.5; 0.5) which is not really ‘classical’ ! Its use needs to be relevantly
justified!
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autocorr.diag(modeldom3$VCV) $

animal dom units

Lag 0 1.000000000 1.000000000 1.000000000

Lag 500 0.009773732 0.088038981 0.098434370

Lag 2500 -0.012963423 0.008679641 0.007021305

Lag 5000 0.002886355 0.009259605 0.005525710

Lag 25000 -0.004708470 0.001587171 0.004412308

The posterior densities (Fig.6) show ‘prettier’ curves. We however see that the dom component

still has a secondary mode in zero (which could be not so abnormal after all). The parameter

extension allows thus for better mixing properties for our MCMC chains, but it is not to forget

the informative character of our priors. It is often hard to find a trade-off between a non infor-

mative prior and MCMC mixing properties, especially while speaking of variance components.

Unfortunately, each dataset is unique and no universal consensus exists. Doing a sensitivity

analysis (by using different priors and testing the sensitivity of the posterior distribution to the

priors) stays the best method to avoid any suspicion!

5 Going further...

5.1 Generalized animal model: binary data

When using binary data (presence/absence of a character or success/failure for example), some

caution is needed. We will illustrate this with a new binary example:

pedigreebin <- read.table("pedigreebin.txt", header = T)

databin <- read.table("databin.txt", header = T)

head(databin)

animal phen

1 1 0

2 2 1

3 3 1

4 4 0

5 5 1

6 6 0

5.1.1 Defining a prior

The choice of the prior requires already some modifications. Indeed, it is impossible to evaluate

simultaneously the additive genetic variance VA and the residual variance VR
9. Because of this

9Indeed, whatever the value of VP = VA + VR, the variance of the binary data will always be p(1− p) where
p is the probability of success (and does not depend on VP ).

26



0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0.
5

1.
5

2.
5

Iterations

Trace of animal

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
4

0.
8

N = 19998   Bandwidth = 0.05402

Density of animal

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0.
0

1.
0

2.
0

3.
0

Iterations

Trace of dom

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

N = 19998   Bandwidth = 0.08123

Density of dom

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0.
0

1.
0

2.
0

Iterations

Trace of units

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

N = 19998   Bandwidth = 0.06726

Density of units

Figure 6: Trace and posterior density of the variances for the MCMC run using parameter expansion. The term
animal refers to VA, dom to VD and units to VR.

identifiability issue, we usually fix VR to 1 and estimate VA solely (when more random factors

are included, they can be estimated as well, but VR still must be fixed to 110. Because of this,

it becomes tricky to define a good prior for VA (and other possible random effects variance).

On Fig. 7, we see the difference between the prior we use so far for VA and a new prior (a χ2

with 1 degree of freedom). We see that neither is quite perfect. Indeed the first puts too much

weight in 1 while the second puts too much weight in 0. However, a glance at the cumulative

density function (Fig. 7, right) shows that the first really puts almost all the weight in 1 while

the probabilistic weight of the second is more spread between 0 and 1. We thus advice to

use the χ2 prior distribution when estimating heritability of binary data. This is not an ideal

choice, but unfortunately, we do not have too much of a choice for prior distributions when

using MCMCglmm. As always though, the influence of the prior distribution fade away with a

sufficient sample size.

10It is however not recommended to include lots of random factors with binary data: because of the lack of
information provided by this kind of data, the variance components estimation might become unstable
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Figure 7: Prior density function (left) and prior cumulative density function (CDF, right) of the heritability
using two kind of priors for additive genetic variance VA: (i) inverse Gamma (dark green) and (ii) χ2 with 1
degree of freedom (green).

To use this new prior, we use the parameter extension with the supplementary parameters

alpha.mu and alpha.V:

prior <- list(R = list(V = 1, fix = 1), G = list(G1 =

list(V = 1, nu = 1000, alpha.mu = 0, alpha.V = 1)))

Then, for the model, all we need is to change the parameter family for a binomial distribution.

In MCMCglmm(), there is two kinds of family that fit our needs: categorical which uses a logit

link and ordinal which uses a probit link (and consider that the categories are ordered, but

that has no effect on binary data). Since the probit link is more natural for animal models, we

will choose the last one. At last, it is quite common to get strong autocorrelation in the MCMC

chains with binary data. We thus multiply the thin parameter by 10 and the total number of

iterations (nitt) accordingly:

modelbin <- MCMCglmm(phen ~ 1, random = ~animal, family = "ordinal",

prior = prior, pedigree = pedigreebin, data = databin, nitt = 1e+06,

burnin = 10000, thin = 100)

MCMC iteration = 0

Acceptance ratio for latent scores = 0.000647

MCMC iteration = 1000

Acceptance ratio for latent scores = 0.443566
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MCMC iteration = 2000

Acceptance ratio for latent scores = 0.442072

... ... ...

MCMC iteration = 999000

Acceptance ratio for latent scores = 0.468743

MCMC iteration = 1000000

Acceptance ratio for latent scores = 0.471385

For some reasons, the function gives us some information about the acceptance ratio of the

latent scores, which is recommended to be around 0.44. After the usual checking steps, we

compute the posterior distribution of the heritability likewise (not forgetting to add the last 1

due to the ‘variance’ of the probit link, see section 3.3.3):

heritbin <- modelbin$VCV[, "animal"]/(modelbin$VCV[, "animal"] +

modelbin$VCV[, "units"] + 1) $

mean(heritbin)

[1] 0.5322876

HPDinterval(heritbin)

lower upper

var1 0.3775965 0.6869016

attr(,"Probability")

[1] 0.95

Note that the effective size for the heritability estimate is not really large, despite a thinning

interval of 100, suggesting an quite strong autocorrelation:

effectiveSize(heritbin)

var1

3372.556
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5.2 A multi-traits model

5.2.1 Why a multi-traits model?

It might be interesting to address the genetic basis of several phenotypic traits at the same

time, notably to avoid any confounding effect between these traits, but also because the genetic

correlation may be a parameter of biological interest! Here, we will focus on bivariate model11

composed of measurements on two different phenotypic traits:

pedigreemulti<-read.table('pedigreemulti.txt',header=T)

datamulti<-read.table('datamulti.txt',header=T)

headtail(datamulti)

animal phen1 phen2

1 1 11.01 -1.86

2 2 10.05 -0.77

3 3 9.3 0.84

4 4 9.87 0.77

... ... ... ...

997 997 9.9 0.06

998 998 12.82 -0.44

999 999 9.25 1.03

1000 1000 7.74 0.48

5.2.2 A word on priors

As always, difficulties arise when it comes to the choice of a good prior. Here, we do not talk

about simple variances anymore, but about a variance-covariance matrix. In two dimensions,

such a matrix is shaped like: (
V1 C1,2

C1,2 V2

)
(14)

where Vi is the variance (for example additive genetic) associated to the trait i and C1,2 is

the covariance (for example genetic) between trait 1 and trait 2. We thus need a kind of prior

distribution relevant for matrices. To do so, we use a matrix distribution called inverse Wishart.

Here, we have two choices. The following prior:

prior<-

list(R=list(V=diag(2)*(0.002/1.002),nu=1.002),

G=list(G1=list(V=diag(2)*(0.002/1.002),nu=1.002)))

is roughly equivalent to the one we used so far, which is a (marginal) inverse-Gamma(0.001,0.001)

on variances; and the (marginal) prior distribution of correlation follows to some extent a

11We do not recommend to fit models with a too large number of traits, unless having a very large sample
size and enough time for the MCMC to run!
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Beta(0.001,0.001) distribution12. However, this inverse Wishart distribution is not well de-

fined and might cause instability in the MCMC. A more ‘proper’ parametrization would be the

following:

prior<-

list(R=list(V=diag(2)/2,nu=2),

G=list(G1=list(V=diag(2)/2,nu=2)))

However, we here define (marginal) inverse Gamma(0.5,0.5) and (still to some extent) Beta(0.5,0.5)

distributions for variances and correlation. Yet this prior is more informative than the last one,

notably for small variances. We here thus have a choice to make according to sample size, ex-

pected variance estimations and stability of the MCMC. In the following and to stay consistent

with the previous parts, we will use the first prior.

5.2.3 Using MCMCglmm() with a multi-traits model

On its multivariate shape, the function must be used likewise:

modelmulti<-MCMCglmm(cbind(phen1,phen2)~trait-1,random=~us(trait):animal,

rcov=~us(trait):units,family=c("gaussian","gaussian"),prior=prior,

pedigree=pedigreemulti,data=datamulti,nitt=100000,burnin=10000,thin=10)

Here, the ‘response variable’ is an array with two columns binded using the cbind() func-

tion, each line containing the measure of both traits for one individual. On the other side

of the formula, the notation trait-1 allows us to estimate the mean of each trait, instead

of the contrast between the two traits. Note that the argument family now requires a vec-

tor with the data distribution of each trait. Finally, the argument random has changed and

a new argument rcov appeared: these two arguments allow us to define the structure of the

variance-covariance matrix for the random effects (random) or the residual variances (rcov).

The command us(trait):animal states that we define these matrix exactly as written is

Eq.14. This is the role of the function us(). If we simply had used random=~animal, we would

have defined the following variance-covariance matrix:(
V V

V V

)
(15)

Doing so, we assume that both traits have the same variance (V1 = V2 = V ) and are perfectly

correlated (ρ1,2 = 1). Beside the function us(), the function idh() exists, which fixes the

12In fact, from the covariance C1,2, we can define the correlation as ρ1,2 =
C1,2√
V1 V2

. We then know that if the

parameter V is a diagonal matrix, we have
ρ1,2 + 1

2
∼ Beta( nu−1

2 , nu−1
2 )
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covariances to 0. Indeed the call random=~idh(trait):animal defines the following matrix:(
V1 0

0 V2

)
(16)

5.2.4 Results of a bivariate MCMC

The previous MCMC run give us the following results:

summary(modelmulti)

Iterations = 10001:99991

Thinning interval = 10

Sample size = 9000

DIC: 6050.479

G-structure: ~us(trait):animal

post.mean l-95% CI u-95% CI eff.samp

phen1:phen1.animal 1.1564 0.8659 1.4589 3222.0

phen2:phen1.animal 0.7026 0.5017 0.8995 1513.4

phen1:phen2.animal 0.7026 0.5017 0.8995 1513.4

phen2:phen2.animal 0.5205 0.3377 0.7147 446.3

R-structure: ~us(trait):units

post.mean l-95% CI u-95% CI eff.samp

phen1:phen1.units 0.9461 0.77350 1.1254 3560.0

phen2:phen1.units 0.1452 0.02207 0.2668 1350.3

phen1:phen2.units 0.1452 0.02207 0.2668 1350.3

phen2:phen2.units 0.9579 0.80731 1.1062 611.7

Location effects: cbind(phen1, phen2) ~ trait - 1

post.mean l-95% CI u-95% CI eff.samp pMCMC

traitphen1 10.13235 9.89961 10.34914 8557 <1e-04 ***

traitphen2 0.07419 -0.10057 0.22675 7314 0.364

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In this summary, the notation phen1:phen1 stands for the variance for the trait 1 and phen1:phen2

stands for the covariance between the two traits. We see that the additive genetic variance is

different for the two traits (1.15 for trait 1 and 0.52 for trait 2) while the residual variances

are almost identical. We thus expect different heritabilities. Note the small effective size for

phen2:phen2.animal and phen2:phen2.units. Ideally, we would have to run again the MCMC

with more iterations, but we will content ourselves with this result in this tutorial.
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5.2.5 Computing heritabilities and genetic correlations

Almost like in the univariate case, the posterior distribution of the heritability is computed as:

herit1<-modelmulti$VCV[,'phen1:phen1.animal']/

(modelmulti$VCV[,'phen1:phen1.animal']+modelmulti$VCV[,'phen1:phen1.units'])

herit2<-modelmulti$VCV[,'phen2:phen2.animal']/

(modelmulti$VCV[,'phen2:phen2.animal']+modelmulti$VCV[,'phen2:phen2.units'])

mean(herit1)

[1] 0.5484367

mean(herit2)

[1] 0.3509364

Like expected, the two heritabilities are different, the trait 2 being less heritable than the trait

1. Let’s now compute the genetic correlation:

corr.gen<-modelmulti$VCV[,'phen1:phen2.animal']/

sqrt(modelmulti$VCV[,'phen1:phen1.animal']*modelmulti$VCV[,'phen2:phen2.animal']) $

mean(corr.gen)

[1] 0.9099979

We see that the genetic correlation is strong, around 0.91, which involve some genetics in

common for the traits.

6 Some references

Regarding quantitative genetics, and notably heritability estimation, three books are very com-

prehensive (Falconer & Mackay 1996, Roff 1997, Lynch & Walsh 1998). They however are

quite old references, and develop little around the animal model. Fortunately, a consequent

literature is currently build around the quantitative genetics of wild populations: various re-

views (Kruuk 2004, Postma & Charmantier 2007, Kruuk et al. 2008, Visscher et al. 2008) and

a guide (Wilson et al. 2010) are available on the animal model (see also the associated Wild

Animal Model Wiki13). Two interesting retrospectives on quantitative genetics give a previous

insight into its fundamentals (Roff 2007, Hill & Kirkpatrick 2010). Some comparison between

the different approaches are also available (Kruuk 2004, Kruuk & Hadfield 2007). Regarding

MCMCglmm, the course notes by its developer Jarrod Hadfield form a really nice and reachable

13Be careful! The prior definitions in this Wiki are erroneous for the MCMCglmm part: NEVER use the data
to be analyzed in order to define a prior distribution!
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teaching document about mixed models and Bayesian, while about the handling of the package

itself. Gelman et al. (2004) is a very comprehensive book about Bayesian inference and Ellison

(2004) is a review focused on what Bayesian statistics can bring into Ecology and Evolution.

Some methodological papers: about including fixed effects in animal models (Wilson 2008),

the importance of taking into account the common environmental effects (Kruuk & Hadfield

2007), the influence of extra-pair copulations (Charmantier & Réale 2005) or the influence of

data and pedigree quality for heritability estimation (Quinn et al. 2006). A mailing list exists

for help about mixed models in R, in which Jarrod Hadfield is very active. To subscribe, see

here. Finally, two recent articles about an alternative Bayesian method for animal model es-

timations (Holand et al. 2011) or about molecular approaches (Sillanpää 2011) using genetic

data.
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