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What is heritability?

■ Preamble

• Why this tutorial?
This tutorial is intended for students or researchers in evolutionary ecology or evolutionary quanti-
tative genetics, interested in using the animal model to estimate the heritability of biological traits,
with a focus in wild populations. It aims at providing theoretical and practical help on three main
issues: (i) understanding what heritability is, what it quantifies and how the animal model works;
(ii) learning by practice how to implement animal models using the MCMCglmm R package; and
(iii) introducing Bayesian statistics (priors, Markov Chain Monte Carlo, etc.). The author tried to use
examples of increasing complexity to start with some very easy “hands on” and finish with some of
the most tedious aspects of MCMC estimation methods. Finally, although this tutorial is directly in-
spired from J. Hadfield course notes (Hadfield 2016), it tries to bring new information more focused
on heritability estimation and good use of MCMC.

• Why a new version?
The previous version was relatively old (written in 2012) and a part of the content was starting to
be a bit outdated. Also, I changed my mind on a few advices of the first version (including fixed
effects and dealing with non Gaussian traits) over time and wanted a new version to reflect the
“state-of-the-art” I have in mind.

• Prior knowledge
The readers are assumed to have an average knowledge of evolutionary biology and its problems,
along with some notions of quantitative genetics. They are also assumed to have a basic understand-
ing of statistical mixed models framework and its associated vocabulary (fixed and random effects
especially) and to have some familiarity with their formulation. A vague knowledge of Bayesian
statistics and a familiarity with the R statistical software are needed for a correct understanding of
section 3, but not for the section 1 and section 2.

• How to cite this document?
Since this tutorial is essential merging the oldmaterial of the first tutorial, some parts of the QGglmm
vignette and the more recent material from de Villemereuil (2018), I think it’s best to cite this most
recent reference:

P de Villemereuil (2018). Quantitative genetic methods depending on the nature of the phe-
notypic trait. Annals of the New York Academy of Sciences. The Year in Evolutionary Biology
1422, 29–47

■ 1 What is heritability?

• 1.1 Definition
Let’s study a phenotypic trait in a given wild population. This trait varies among individuals,

each having a more or less different value from the others. This variation is quantified by a variance
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1.2 A few words

(called phenotypic variance or 𝑉P). It originates from different sources, but in a schematic way, we
will state it has a genetic component 𝑉G and an environmental component 𝑉E:

𝑉P = 𝑉G +𝑉E (1)

The genetic variance itself originates from different sources. To keep it simple, and following the
principles introduced by Fisher (1918), we will assume an additive component𝑉A and a non-additive
component 𝑉NA (dominance, epistasis, etc.). We thus write:

𝑉P = 𝑉A +𝑉NA +𝑉E (2)

The interest of that variance decomposition lies in the fact that𝑉A stands for the part of phenotypic
variability which is actually genetically transmitted to the descendants (at the level of the whole pop-
ulation). The reasons for why only𝑉A is transmitted are linked to how the “additivity” is constructed
and outside the scope of this tutorial (for a detailed explanation, the reader can read Lynch & Walsh
1998, pp. 65-79). For natural selection to result in evolutionary change, a part of the phenotypic
variability, on which it acts, must be “transmittable” (we say that the trait is heritable).

Thus we introduce a quantity, called heritability, which allow us to measure how much the phe-
notypic variability of a trait in a given population is likely to be transmitted to the offspring. The
heritability ℎ2 is here defined as the contribution of additive variance into the variability of the
phenotype. Using previous notations :

ℎ2 =
𝑉A
𝑉P

(3)

The heritability has a value that lies between 0 and 1.

• 1.2 A few words
• Heritability is not heredity! Heredity is the transmission of a phenotypic value from a parent
to his offspring, while heritability is the transmission of the phenotypic variability within a
population from generation to generation. For example, the number of legs in humans has a
no heritability (any variation would be environmental), but is totally hereditary.

• It is important to stress that the heritability of a trait is defined for a given population at a
given time. This quantity can vary between populations, and from time to time.

• Heritability can be a poor measure of additive genetic variance across contexts (e.g. labs vs.
wild) and species, especially in cases were the environmental variance is likely to dominate
as a source of variation.

• 1.3 Possible biases on heritability
A bias on heritability can originates from confouding resemblance between individuals, which could
be misinterpreted as additive genetic effects. We thus need to get rid of two main sources of nui-
sance: the rest of the genetic effects (link to a correct estimation of𝑉NA) and the environmental effect.

‣ 1.3.1 Genetic nuisance
They aremainly linked to dominance effects and epistasis, which, if they are badly accounted for, can
lead to an overestimation of heritability. Hopefully, some methods are not sensitive to dominance
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1.4 Which approach to infer heritability in the wild?

effects (see subsection 1.4). Epistasis is a more complex and generalised issue, but it is a second order
effect which is generally neglected by the models. Inbreeding can also lead to an overestimation of
heritability, if not accounted for. There is also some factors that are hard to take into account, such
as linkage…

‣ 1.3.2 Environmental nuisance
They are of various type, yielding greater resemblance between individuals than expected based on
relatedness. Among others:

• Common environment Related individuals in a common environment (birth spot, habitat,
etc.) are likely to show extra phenotypic resemblance.

• Parental effects Some characters of parents (quality, immunity, etc.) can yield an extra re-
semblance between their offspring and them; or more generally, extra resemblance within
their offspring, independently of their phenotypes¹.

• Assortative mating A tendency of individuals to mate with partners sharing the same phe-
notype will lead to extra resemblance within their offspring.

From a practical point of view, the sensitivity to genetic effects (mostly dominance and inbreed-
ing) will depend on the approach used to measure heritability. Environmental effects can sometimes
be avoided with a careful design. The animal model approach allows to integrate some of theses ef-
fects in the model.

• 1.4 Which approach to infer heritability in the wild?
Different approaches can be used to infer heritability in the wild. They are characterised by both
the type of data (especially, the type of relatedness between individuals available in the data) and
the kind of statistical methods used.

Sibling design This approach uses the relatedness between (full- or half-)siblings in order to mea-
sure heritability. An ANOVA model compares the within-family to the inter-family sum-of-squares
to estimate heritability. Because of an experimental protocol difficult to apply in wild population
and an annoying issues with biased estimation of the heritability due to dominance and common
environment effects (see above), this approach is less used in wild animal population. It is how-
ever important to note that the designs using half-sibling are not sensitive to dominance effects, but
they do require some methodological conditions (certain identification of both parents, polygamy
or sequential monogamy, etc.).

Parent-offspring regression This approach uses the regression of the phenotype of the mid-
parent (or one of the parents) on the mean phenotype of the offspring. Well studied, its properties
are well-known (Falconer & Mackay 1996; Roff 1997; Lynch & Walsh 1998). This approach is not
biased by dominance effects, but ignore issues linked to inbreeding. More over, although a cor-
rection exists concerning assortative mating (Falconer & Mackay 1996, p.178), the parent-offspring
regression remains sensitive to common environment between parents and offspring (territory in-
heritance, weak dispersal, etc.) and to transgenerationnal parental effects (i.e. parental effects which
depend on the phenotype of the parent).

¹The difference is important, since the former kind is what most biologists have in mind, whereas only the last kind
can be modeled using the animal model, see subsection 2.3.
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The animal model in theory

Animalmodel The animal model is a more complex approach, in the sense that it doesn’t use only
one kind of relatedness, but uses every known relationship in the whole pedigree of the population.
It thus uses the maximum of information available, and to take into account inbreeding. It is a mixed
model and thus can take into account several factors (mostly environmental) in order to avoid biases
described in subsection 1.3. We will focus on this approach in the following parts.

■ 2 The animal model in theory

• 2.1 Basic principle
The animal model uses a pedigree of the wild population. Such a pedigree indicate the father (or
sire) and mother (or dam) for each individuals, like in the following array:

individual mother father
1 A1 NA NA #NA stands for Not Available value
2 A2 NA NA
3 A3 NA NA
4 A4 NA NA
5 A5 A2 A4
6 A6 A1 A3
7 A7 A1 A3
8 A8 A1 A3
9 A9 A2 A4
10 A10 A2 A4

The individuals for which both the father and the mother are unknown are often called founders
or base population. They generally are individuals from the beginning of the survey or immigrants.
The individuals from the base population are assumed unrelated to each others. Note that this
means that such base population can be composed, in majority, of immigrants, making it a weird
reference. Accounting for immigration groups can be performed with some work using the animal
model framework (Wolak & Reid 2017). This kind of pedigree allows the calculation of relatedness
among all individuals of the population:

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A1 1 0 0 0 0 1/2 1/2 1/2 0 0
A2 0 1 0 0 1/2 0 0 0 1/2 1/2
A3 0 0 1 0 0 1/2 1/2 1/2 0 0
A4 0 0 0 1 1/2 0 0 0 1/2 1/2
A5 0 1/2 0 1/2 1 0 0 0 1/2 1/2
A6 1/2 0 1/2 0 0 1 1/2 1/2 0 0
A7 1/2 0 1/2 0 0 1/2 1 1/2 0 0
A8 1/2 0 1/2 0 0 1/2 1/2 1 0 0
A9 0 1/2 0 1/2 1/2 0 0 0 1 1/2
A10 0 1/2 0 1/2 1/2 0 0 0 1/2 1

N
ot

e

Due to the influence of inbreeding, the diagonal elements are often (slightly) larger than
1 and they are expected to be exactly equal to 1 only for the founders. This matrix is the
additive genetic relatedness matrixA. It is included in a random or mixed model in order
to estimate its associated variance component 𝑉A (i.e. additive genetic variance).
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2.2 Model description

• 2.2 Model description
Let’s have several measures of a phenotype 𝑦 on 𝑛 individuals, during a given period and in a

given wild population. These measures are gathered in a vector:

𝑌 =
©­­«
𝑦1
...
𝑦𝑛

ª®®¬ . (4)

These data are given along a pedigree of the population containing information for all 𝑛 measured
individuals. Our aim is to separate the variation in the phenotypic trait 𝑌 between an additive
genetic variance 𝑉A and the “rest” (often too quickly assimilated to environmental variance). In
order to do that, we will consider the phenotype 𝑦𝑖 of the individual 𝑖 as a variation around the
average phenotype 𝜇 in the base population (corresponding to the founders). We will separate the
variation originating from the transmissible additive genetic effects 𝑎𝑖 and the “rest”, wich we will
call the residual and note 𝑒𝑖 :

𝑦𝑖 = 𝜇 + 𝑎𝑖 + 𝑒𝑖 . (5)

We still need to define the distribution of the breeding values 𝑎𝑖 and residuals 𝑒𝑖 (𝜇 is a simple
constant). The breeding values are assumed normally distributed, given the pedigree, and thus the
additive genetic matrix A: ©­­«

𝑎1
...
𝑎𝑛

ª®®¬ ∼ N(0,A𝑉A) (6)

𝑉A is the additive genetic variance we are looking to estimate here, in order to estimate the heritabil-
ity of the trait. The residuals 𝑒𝑖 are also normally distributed:

©­­«
𝑒1
...
𝑒𝑛

ª®®¬ ∼ N(0, I𝑉𝑅) (7)

where I stands for the identity matrix and 𝑉𝑅 is the residual variance.

From Equation 5, Equation 6 and Equation 7, the key assumptions of the animal model are:

• The breeding values 𝑎𝑖 are normally distributed and correlated among related individuals. The
function of the pedigree is to structure the correlation between individuals by taking into
account their relatedness.

• The residuals 𝑒𝑖 are normally distributed and uncorrelated. They also are independent from
the breeding values (e.g. no environment-genotype covariation).

• As a result, the 𝑌 trait can be considered a “Gaussian trait”, i.e. a trait which can be analysed
in a way so that the residuals 𝑒𝑖 are indeed normally distributed, even it requires the inclusion
of some fixed effects to account for parts of the distribution of 𝑌 .

The main outputs of the animal model are an estimate of the additive variance𝑉𝐴 and an estimate
of the residual variance 𝑉𝑅 . These two variance components sum to the total phenotypic variance
𝑉P. We thus estimate the heritability as:

ℎ̂2 =
𝑉𝐴

𝑉𝐴 +𝑉𝑅
(8)
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2.3 Going further into the model

• 2.3 Going further into the model

‣ 2.3.1 Adding random effects
In order to account for some possible biases (common environment, parental effects…), it is possible
to add random factors in the model. When those random factors (𝑈1, ...,𝑈𝐾 ) are added, they have to
be taken into account for the calculation of the total phenotypic variance, such as:

ℎ̂2 =
𝑉𝐴

𝑉𝐴 +𝑉𝑈1 + ... +𝑉𝑈𝐾 +𝑉𝑅
(9)

N
ot

e Sometimes, it can also be relevant to exclude some factors from the denominator, so that
the computed heritability is conditional to those factors, i.e. computed as if those factors
were kept constant.

Parental effects Including the identity of the parents (or only one parent) as a random effect
allows to account for possible parental effects. However, it has to be stressed that, included that
way, parental effects only take into account the resemblance among siblings from the same parents,
but in no way the resemblance between parents and offspring! For example, one famous maternal
effect is the quality of mother’s milk in mammals: mothers of the best phenotypic “quality” are
supposed to give the best milk, which in turns help her offspring to grow healthy. In this context,
including the identity of the mother into the model will state that the offspring of a same mother
are likely to develop a close phenotype because of the more or less good quality of the mother’s
milk, but it doesn’t imply any resemblance between the ‘quality’ of the mother and her offspring. In
other words, the parental effect is independent from the parental phenotype (this a non transgener-
ationnal effect)! A kind of parental effects in animal models that are transgenerationnal are genetic
parental effects (see Wilson et al. 2010, for example). This effect assume a hypothetical ‘maternal
performance’ trait which is a summary of potential maternal traits acting on the offspring’s pheno-
type and is heritable. Including a fully parametrized parental effect (including measured maternal
traits acting on offspring’s phenotype) is not straightforward using animal model, but a more gen-
eral type of models exists that allow for this (Kirkpatrick & Lande 1989; Räsänen & Kruuk 2007; Day
& Bonduriansky 2011).

Dominance effects Dominance effects are problematic only through a supplementary correla-
tion among full-sibs. Since the animal model uses all kind of relationships, it is sensitive to domi-
nance effects, especially if the pedigree contains large siblings groups. A dominance matrix is not
necessarily difficult to construct, but the calculation has to be made before the use of MCMCglmm
(see subsection 3.8).

Repeated measures If repeated measures on individuals are available, it is possible to estimate
what is called a permanent environment effect, by including the identity of individuals as a random
effect. It is important to model such permanent environment, because without this, the animal
model would consider repeated measures as arising from clones, thus biasing the additive genetic
variance estimate. The permanent environment effect also accounts for a part of the non-additive
genetic effects (but doesn’t account for the whole dominance effect for example!). It is important to
realize that the total phenotypic variances 𝑉P are not comparable between a design using repeated
measures and mean value for each individual (taking the mean reduces 𝑉P).
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2.4 Pros and cons

‣ 2.3.2 Adding fixed factors
Including fixed effects The animal model is in essence a mixed model, allowing also for fixed
effects. It can be interesting to add fixed factors to the model, in order to account for some biological
or design-related issues likely to bias our heritability estimation. But, it is important to note that
fixed effects also participate to the total phenotypic variance (Wilson 2008), and thus should be
included in the denominator of the heritability. As an example, a model including a fixed effect
based on a predictor 𝑥 could be written by extending Equation 5:

𝑦𝑖 = 𝜇 + 𝑏𝑥𝑖 + 𝑎𝑖 + 𝑒𝑖 . (10)

where 𝑏 is the slope, for which we will note the estimator 𝑏.

Fixed-effect variance The part of the variance contributed by the fixed effects (𝑉F) is akin to
what measures the numerator of the famous coefficient of determination 𝑅2 and can be defined as
the variance of the predicted values of from the fixed effects (noted𝑦, see de Villemereuil et al. 2018):

𝑉F = 𝑉 (𝑦𝑖) (11)

In our example above, we have 𝑦𝑖 = 𝑏𝑥𝑖 and so 𝑉F = 𝑉 (𝑏𝑥𝑖). We will see below an example of how
this quantity can be computed from a MCMCglmm output.

N
ot

e

Note that an important hypothesis behind the calculation in Equation 11 is that the stan-
dard error in the estimation of 𝑏 is negligible (and thus produce a negligible bias) in front
of the value of 𝑉F. In classical animal models, the sample size of the data is generally
large enough, hence the standard error in fixed effects estimates is low enough, so that
the computation above is relevant.

Computing the heritability with fixed effects Once 𝑉F has been computed, the calculation of
ℎ2 is straightforward, as we simply need to add it to the denominator:

ℎ̂2 =
𝑉𝐴

𝑉𝐴 +𝑉F +𝑉𝑅
(12)

N
ot

e

Just as we noted in for the random effects, some part of the fixed effects could be re-
moved from the computation of𝑉F to compute a conditional heritability, i.e. based on the
assumption that those parameters are kept constant. It is a slightly more complicated
matter, however, as fixed effect predictors could be correlated between them and it could
also beg the question as to which value they should be kept constant. More information
on this issue can be found in de Villemereuil et al. (2018).

• 2.4 Pros and cons
More statistical power, more flexibility… Using the entire pedigree of the population, the an-
imal model has better resources toward a precise estimation of the heritability than the parent-
offspring regression. It is also more accurate by taking into account inbreeding and any selec-
tion event occurring “since” the founders. Adding random effects also allows for explicitly model
dominance effects, common environment effects (nest, habitat, year…) or (non transgenerationnal)
parental effects. Amultivariate variant is also available, yielding genetic covariance between several
traits.
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2.5 Generalised animal model

…but everything is not perfect! The fact that the animal model uses the whole range of rela-
tionship in the population is its strength, but also its weakness. For example, the parent-offspring
regression is only based on “vertical” relationships between individuals and thus ignores any non
transgenerationnal effects: a dominance effect or a non transgenerationnal parental effect will in-
duce no bias on heritability estimation. As a consequence, it is highly important to properly think
about all different sources of effects likely to induce a bias on heritability and (if the data structure
is sufficient) to indicate them to the model using fixed or random effects. It is also important not
to neglect simpler approaches such a parent-offspring regression (or half-sibs design if possible), at
least as a checking step!

• 2.5 Generalised animal model

‣ 2.5.1 Theory of GLMMs
It happens often that phenotypic traits cannot be modelled by a normally distributed random

error. This is especially the case for count, categorical or binary data. In such cases, one has to rely
on Generalised Linear Mixed Models (GLMM) rather than LMM. GLMM allows for the use of many
different kind of distributions by using a hierarchical structure going from a normally distributed
(hypothetical) latent trait to the observed data.
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Figure 1: The three scales of
the Generalised Linear Mixed
Model (here using Poisson with
a log link function as an exam-
ple). The error terms are nor-
mally distributed on the latent
scale, but follows a Poisson dis-
tribution on the observed data
scale (conditionnally on the la-
tent scale).

This structure consists of three “scales” depicted in Figure 1 and
which can bewritten using the following equations, e.g. using a Pois-
son with a log-link model:

ℓ𝑖 = 𝜇 + 𝑎𝑖 + 𝑜𝑖, (13a)

𝜂𝑖 = exp(ℓ𝑖), (13b)

𝑦𝑖 ∼ P(𝜂𝑖), (13c)

where it P stands for the Poisson distribution. It should be noted
that the exponential is the inverse of the logarithm function, which
is how it comes into play in Equation 13b.

In Equation 13a, ℓ refers to something called the latent scale
(see Figure 1). By comparing it to Equation 5, we can see that
the same assumptions are made for ℓ as in any LMM. To re-
flect the fact that the “error” on the latent trait is not the resid-
ual error of the model, we changed the notation of the residual
𝑒 to 𝑜 . The term 𝑜 is still normally distributed and stands for
the additive over-dispersion of the model (Nakagawa & Schielzeth
2010). Accordingly, we will note the variance associated to 𝑜 as
𝑉O.

In de Villemereuil et al. (2016), Equation 13b is said to refer to
the “expected data scale”. This is because the term 𝜂 is the individ-
ual expectation around which the observed data are realised (see
Figure 1). The transition from the latent scale to the expected data
scale is performed by the inverse of the link-function (here, inverse
of the logarithm, which is exponential). The link function is “map-
ping” the variations on the latent scale to variations compatible for
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2.5 Generalised animal model

the distribution used. For example, whereas the latent trait varies between −∞ to ∞, a Poisson dis-
tribution can only use positive values, hence the use of the exponential function which match these
input and output realms (the exponential of something cannot be negative).

Finally, Eq. 13c models the “observed data scale” by adding, around the expectation 𝜂, an error
term from a Poisson distribution (here noted P). This is the part that models (and thus should fit)
the actual data 𝑌 .

Im
po

rt
an

t Most (and very often, all) parameters are inferred on the latent scale, and not on
the observed data scale. All parameters commonly interpreted in quantitative genetics
(population mean 𝜇, additive genetic variance𝑉A,ℓ and all other variance components) are
thus related to a hypothetical latent trait, and hence not directly to the phenotypic
trait of interest (see more about this in section 2.5.2).

‣ 2.5.2 Quantitative genetics and GLMM
How is the use of GLMM justified for quantitative genetics analysis? What should we do differ-

ently than what we are doing when using plain LMM?Many people think that GLMM are just “LMM
with a different distribution”, but we just saw that the reality is more complex than that, especially
because the model has now three different scales, each with a particular behaviour. We thus need
a framework to travel from a scale to another. This is the purpose of the QGglmm package that we
will use the tutorial below. But, it is worth mentioning a few details on quantitative genetics and
GLMMs before starting the pratical part of this tutorial.

N
ot

e Most of the concepts explained in this theoretical part, as well as more practical consid-
erations when using the QGglmm package are available in the vignette of the package:
https://cran.r-project.org/web/packages/QGglmm/vignettes/QGglmmHowTo.pdf

The first thing to mention is why we need the latent trait to be Gaussian (or a latent trait at all…).
This stems from models underlying quantitative genetics, especially Fisher (1918)’s infinitesimal
model: the results of a large number of additive effects, each with a small effect, will result in a
normally distributed genetic component. A similar line of reasoning (e.g. using the central-limit
theorem) allows us to assume the same kind of distribution for the environmental effects. Hence,
more than justified, it is needed² that at some point, something is normally distributed. We simply
call this something “latent trait”.

A second thing to mention is that GLMM are in essence very noisy models. There are three main
sources of noise. A first source is the latter part of themodel (Equation 13c) in which observed values
are drawn around the expected values following the error distribution (e.g. a Poisson or a binomial
distribution). This is the actual “error process” of the model. One thing is very important to note
with this source of noise: contrary to the normally-distributed noise of a LMM, the level of noise
almost always depends on the actual expected value. Indeed, the variance of a Poisson is equal to
the mean, the variance of a binomial distribution depends only on the mean, etc… This means that
we assume that a part of the phenotypic variance is irreducible: there’s always going to be some
variance, depending on the value of the trait.
The second source is this link-function. It is not creating noise (it’s a function, not a statistical

²Well, obviously, this is assuming that the infinitesimal model is a good approximation of the reality.
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2.6 Multi-trait animal model

distribution after all), but it can amplify the noise from the latent scale to a great extent. Think
about the Poisson-log model above: we take the exponential of the latent scale. This means that
values that are close on the latent scale, say 1, 2 and 3, will give respectively 2.7, 7.4 and 20 on the
expected data scale: large values become even larger!
Finally, the last source of noise is the over-dispersion variance present in the latent scale. Despite
GLMMs being somewhat noisy already, it is frequent that this variance is required for a good model
fit³.
Why is it important that GLMM are noisy in the context of quantitative genetics? Well, this means
that phenotypic variance on the observed data scale tends to be large, especially when compared to
the original variance on the latent scale. The direct consequence of this is that heritabilities inferred
on the observed data scale are expected to be rather small! For example, because GLMMs always
assume environmental noise from the error distribution, heritability on the observed data scale can
never reach the maximum value of 1.

A third and last thing to mention is something quite important from a quantitative genetics per-
spective: the link-function is almost never linear! Why is that important? Because it breaks the
additivity of the genetic effects to some degree. Even if only additive effects are assumed on the la-
tent scale, the result on the observed data scale is a mix of additive and non-additive effects (simply
because it went through the inverse-link-function). When computing the heritability, we want to
extract only the additive part, which is all what the package QGglmm introduced below is about. But
this has further consequences. Narrow-sense heritability is nothing like repeatability⁴ when they are
computed on the observed data scale. This means that some of the computations and advice avail-
able in Nakagawa & Schielzeth (2010) regarding repeatabilities are not applicable to narrow-sense
heritability on the observed scale. However, broad-sense heritability (i.e. including the non-additive
effects) can be computed as a repeatability-like estimate (a.k.a. intra-class correlation coefficients,
ICC).

N
ot

e QGglmm also provides a way to compute ICCs, even for non-genetic components, see
the package’s vignette.

• 2.6 Multi-trait animal model

‣ 2.6.1 Multiple traits and their covariance
A multi-trait animal model is a multivariate animal model in which the response variable is “ex-
tended” to include a series of different traits (possibly of different error distributions, if we are con-
sidered a multi-trait generalised animal model). It allows the analysis of several phenotypic traits at
once. But the main interest of such model is not to compact an analysis of different traits in a single
run⁵. The main interest is that it allows inference about the relationship, especially of genetic origin,
between traits.

One interesting measure of such relationship is the genetic and residual covariance between
traits. The genetic covariance (or correlation) between two traits informs how much of their genetic
basis is shared (e.g. through linkage and pleiotropy). For a maximal covariance (correlation of 1),
the two traits entirely share the genes that influence their variance. A genetic modification on a
trait would translate into the same amount of modification on the other. On the contrary, a null

³Sometimes, the over-dispersion variance is also required for the method to work: it is the case for MCMCglmm
⁴Heritability is sometimes considered as an “additive genetic repeatability” and they share most of their features

when assuming a LMM. Especially, they are both some kind of statistics called intra-class correlation coefficients.
⁵It would be more time efficient to run each analysis in parallel.
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2.6 Multi-trait animal model

covariance means that the traits are genetically independent⁶, meaning it is possible to genetically
modify one without impacting the other. The residual covariance can be interpreted in roughly the
same way, except it is supposed to capture everything that was not modelled (hence “residual”), but
still constitute a relationship between the two traits (typically, environmental sources of covariance
between the two traits).

As an example, let’s consider you are a breeder and you want to maximise, both at the same time,
the output of milk and meat yield of your cattle. So, you start selecting for both at the same time.
At some point, however, it is not possible to select for further improvement of both milk and meat
yields, although you realise you could increase either milk or meat yields separately. Why is this?
A simple explanation would be that milk and meat yields are negatively genetically correlated, for
the simple reason that any genetic modification that change metabolism allocation to either meat
or milk production is going to negatively affect the other, as the total energetic budget is limited⁷.
Having the knowledge that such negative genetic correlation exists can help a lot in such cases. In
general, it informs us on the existence of such evolutionary trade-offs. Note that it could well be
that the residual (environmental) covariance between the two traits is positive here, as variations in
the environment of the cattle (e.g. quality of food) will have an impact on both milk and meat yields.

‣ 2.6.2 How does it work?
Basically the multi-trait model “stacks” the two traits (say 𝑌𝑇1 and 𝑌𝑇2) into a very long vector:

(
Y𝑇1
Y𝑇2

)
=

©­­­­­­­­«

𝑦1,𝑇1
...

𝑦𝑛,𝑇1
𝑦1,𝑇2
...

𝑦𝑛,𝑇2

ª®®®®®®®®¬
(14)

Then it uses a model similar to Equation 5 (with adapted notations and, often, an intercept that
depends on the trait). The distribution of the random is likewise “stacked” and the effect variance is
replaced by a variance-covariance matrix. For the additive genetic effect, it thus becomes:

(
a𝑇1
a𝑇2

)
=

©­­­­­­­­«

𝑎1,𝑇1
...

𝑎𝑛,𝑇1
𝑎1,𝑇2
...

𝑎𝑛,𝑇2

ª®®®®®®®®¬
∼ N

((
0
0

)
,G ⊗ A

)
(15)

where G is the additive genetic variance-covariance matrix, which contains the additive genetic
variances in the diagonal and additive genetic covariances on the off-diagonal elements:

G =

(
𝑉A,𝑇1 𝐶A
𝐶A 𝑉A,𝑇2

)
(16)

The operation ⊗ is a Kronecker product, useful here to condense the notation. Basically, it multiply
both matrix “by blocks” as follows:

G ⊗ A =

(
𝑉A,𝑇1A 𝐶AA
𝐶AA 𝑉A,𝑇2A

)
(17)

⁶I know, I know… Absence of correlation does not mean independence. But it works here because of the assumptions
that the two traits are jointly normal, at least on the latent scale for non-Gaussian traits.

⁷I realise this is a very simplified explanation…
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The animal model in practice using MCMCglmm

Note that G ⊗ A is a very big matrix (the number of traits times the number of individuals)! The
residual component is designed exactly the same way:

(
e𝑇1
e𝑇2

)
=

©­­­­­­­­«

𝑒1,𝑇1
...

𝑒𝑛,𝑇1
𝑒1,𝑇2
...

𝑒𝑛,𝑇2

ª®®®®®®®®¬
∼ N

((
0
0

)
,R ⊗ I

)
(18)

N
ot

e

If these equations were a bit too much for you, just keep in mind: the aim of such multi-
trait models is to infer (among other things) the variance-covariance matrices G and R
(which dimensions are the number of traits), rather than just the variances𝑉A and𝑉R, as
we’ve been doing for now.

■ 3 The animal model in practice using MCMCglmm

• 3.1 Some notions about Bayesian statistics
This section does not aim to be a lecture about Bayesian inference. However, at least some basics
are needed for a proper use of the MCMCglmm package. The output of a Bayesian inference is
a posterior distribution, i.e. a probabilistic distribution associating each value of a parameter to a
probability (or degree of belief). The inference model is made of a likelihood function (in everything
identical to the “classical” frequentist counterpart) and a prior distribution of the parameter(s) to be
estimated. The likelihood model has been described in the previous section, we just need to choose
the prior distributions for the parameters to be estimated.

N
ot

e For more information about Bayesian statistics and MCMCglmm, I advise the reader to
consult Jarrod Hadfield’s course notes, who developed the MCMCglmm package.

What is the MCMC estimation method? The aim of the MCMC algorithm (Markov Chain
Monte Carlo) is to numerically approximate the posterior distribution of the parameters. To do so it
uses an algorithm based on consecutively drawing a new value for a parameter, based on the value
of the other parameters. After a convergence phase (often rather small in MCMCglmm), the MCMC
algorithm tends to propose values within the posterior distribution of the parameters. Saving the
value of the parameter at each iteration (or a subset, see later), we get a series of values drawing the
posterior distribution of interest (just as a series of normally distributed values draw the famous bell
curve). The whole suite of generated values are referred to as chains (because they are realisations
of a Markov Chain process). In order to get a good picture of this posterior distribution, we would
ideally need a rather large sample of that chain (say above 1000), for which the autocorrelation is
negligible. Indeed, the successive iterations of the MCMC algorithm have the annoying tendency to
be correlated from one draw to the next. This is due to the fact that the proposal of a new value is
based on its current value, and those of the other parameters. This autocorrelation reduce the effective
size of our sample. The effective size of a draws sample is the size of an ideal uncorrelated sample
(all draws are independent) equivalent to our draws sample, in terms of how much information we
obtained regarding the posterior distribution. For example, 10,000 draws highly correlated might
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3.2 Choosing a prior distribution

have an effective size of 100 (i.e. they are equivalent to 100 independent draws), since they aremostly
redundant in the information about the posterior distribution they convey. Since the iterations are
correlated with those in proximity, we can pick up in advance a thinning interval which reduces the
final draws sample size (for example, we choose to keep only one iteration value every 10 iterations).
This allows to spare memory and lightens further analysis. To put it in a nut shell, there are two
important issues to monitor when using the MCMC:

• The convergence It is important to check we waited long enough for the convergence (this
waiting period is often called the burn-in) to actually happen, before saving iteration values.
Unfortunately, there is no way to tell in advance how long the burn-in has to be, so post hoc
checks are generally used.

• The autocorrelation The level of autocorrelation of a MCMC chain highly depends on the
model we are fitting, as well as on the data. Monitoring the final autocorrelation of our draws
sample, and more importantly, the effective sample size of the parameters is thus very im-
portant to ensure we obtained enough information about the posterior distribution of such
parameters.
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It is quite important to realise that autocorrelation is nothing absolute, and depends on
both the model and the data. Often, authors report the total number of iterations, length
of the burnin period and thinning interval: this is actually meaningless without further in-
formation on the autocorrelation, as a reader/reviewer cannot assess whether theMCMC
was long enough based on this information, even with expert knowledge. Reporting the
effective sample size (minimal or for all parameters) is, for example, much more infor-
mative than reporting the thinning interval used! As mentionned above, thinning is for
computational convenience and does not help reduce autocorrelation in itself, only run-
ning MCMC for longer does.

• 3.2 Choosing a prior distribution

‣ 3.2.1 What is a good prior?
The best prior is a prior that reflects the prior degree of belief of the researcher before starting the
analysis (e.g. reflecting the state-of-the-art). In practice, priors are scarcely used that way because
(i) people tend to not be at ease with the notion of “prior degree of belief” in scientific research⁸ and
(ii) such informed priors can be difficult to model mathematically. As a result, most people prefer
to resort to non informative priors, which means that the prior should not influence the estimated
posterior distribution. In most cases, ‘flat’ priors check this criterion, but it is not a golden rule. It is
actually quite difficult, without a prior sensitivity study, to predict the influence of the prior. Worse,
the notion of non informative prior for a variance component is almost impossible to be defined
relevantly (Gelman 2006). Fortunately, the strength of the prior fades away whith the sample size of
the data: with sufficient sample size, this prior issue becomes negligible. For the definition of priors,
the MCMCglmm package has specific distributions already implemented.

‣ 3.2.2 Prior distribution for a random effect variance
Regarding the prior distribution of variances, MCMCglmm uses an inverse-Gamma distribution,
which is a common choice. In the package, the distribution is parametrized by two parameters nu

⁸Whether this attitude is justified or not is subjected to heated debates, and is not the point of this tutorial.
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Figure 2: Shape of inverse-Gamma(0.001; 0.001) prior distribution on variance components (left) and in-
duced shape of the prior for heritability (right).

and V⁹. A possible set of parameters would be nu = 0.002 and V = 1 (Figure 2). Indeed, it allows for
a weakly informative prior on variance components and U-shaped prior (with a very steep shape on
the borders in 0 and 1) on the heritability. This choice is obviously not the only one, but it has the
quality of being ‘classical’ (though not appropriate for too small variances, see Gelman 2006) and
generally weakly informative. To define this prior on variances using MCMCglmm, we use an R list
as follows:

prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002)))

In this list, the R argument stand for the prior on the residual variance. The G argument (itself a
list) is for random effects variance (called G1, G2, etc.). In presence of 3 random effects in the model,
we need to define 3 priors in G:

prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002),

G2 = list(V = 1, nu = 0.002),
G3 = list(V = 1, nu = 0.002)))

‣ 3.2.3 Parameter expanded prior distribution
A variation of the above implemented in MCMCglmm a parameter expanded prior (Gelman 2006), which
allows for a bit more flexibility and usually results in better mixing of the chains. The idea behind
the parameter extensions lies into splitting the random effect 𝑢𝑖 into two independent components:

𝑢𝑖 = 𝛼 𝜂𝑖
with 𝜂𝑖 ∼ N(0;𝑉𝜂)

(19)

⁹On the Wikipedia website, the inverse Gamma is parametrized differently using 𝛼 and 𝛽 notations. Since MCM-
Cglmm notations are not usual, here are their ‘translation’: 𝛼 = nu

2 and 𝛽 = nu×V
2 . Thus, a distribution parametrized by

nu = 0.002 and V = 1 is actually an inverse Gamma(0.001; 0.001).
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3.3 MCMCglmm() function parameters

Doing so, we implicitly split the variance of the random effect 𝑢 in two: 𝑉𝑢 = 𝛼2𝑉𝜂 . We have the
following prior distributions for 𝛼 and 𝑉𝜂 :

𝛼 ∼ N(0;𝑉𝛼 )
𝑉𝜂 ∼ Inverse-Gamma(V;nu) (20)

OK… This is a bit technical. What’s important here is to remember that using this kind of prior
might help in obtaining better mixing of chains, and can allow for a bit more flexibility in its shape.

So, how does one do this in MCMCglmm? We simply add more parameters in our prior statement.
For example, an interesting prior is this one:

prior <- list(R = list(V = 1, nu = 1),
G = list(G1 = list(V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000)))

It defines a ‘Fisher’ prior¹⁰ that is more informative toward small variances, but also puts less weight
in very tiny values close to zero. It is usually a nice prior when variances are expected to be small.
Note that the residual variance cannot have residual expanded parameters. In order to fit the “sce-
nario” here, I’ve set nu = 1 for this residual variance, which contributes to the MCMCmixing better
when variances are small.

‣ 3.2.4 Prior distribution of fixed effects
Regarding the prior distribution of fixed effects, the package defaults to a very wide Normal distri-
bution (i.e. with an extremely large variance), which is a relevant and quite consensual choice few
users will have to customize further.

• 3.3 MCMCglmm() function parameters

‣ 3.3.1 The data
For the whole tutorial, we will use a (fake, of course) “phoenix” dataset that was first designed for de
Villemereuil (2018). This dataset consists of the (ancient) monitoring of a population of phoenix birds,
nesting in separate small woods, with natal dispersal, on which we measured the length of tarsus,
weight, whether they were of white or golden plumage and the number of time they revived before
eventually (and sadly) disappearing. Some more information like personality, and year, temperature
and phase of the moon at the time of birth were also measured/recorded:

data <- readRDS("data.rds")
psych::headtail(data)

animal Wood Tarsus Weight Disp_Distance White Nb_Revival Personality Birth_Year
1 1 Wood_14 54.26 504.01 11.83 1 1 Medium 1535
2 2 Wood_10 47.47 483.1 5.96 1 0 Bold 1535
3 3 Wood_14 49.01 504.21 0.7 0 3 Medium 1535
4 4 Wood_16 51.07 481.94 2.87 0 0 Bold 1535
... ... ... ... ... ... ... ... ... ...
997 997 Wood_13 48.39 496.33 1.69 0 1 Shy 1542
998 998 Wood_20 52.58 523.43 20.03 1 2 Shy 1542
999 999 Wood_15 45.04 472.84 6.94 0 0 Bold 1542
1000 1000 Wood_30 49.71 501.81 1.24 0 0 Medium 1542

¹⁰The distribution for G1 is a scaled F-distribution.
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3.3 MCMCglmm() function parameters

Birth_Temp Birth_Moon
1 21.87 Full
2 17.34 Full
3 14.18 First
4 20.93 New
... ... ...
997 21.36 New
998 26.07 Full
999 19.17 New
1000 17.79 Last

Of course, a pedigree of the population is available.

‣ 3.3.2 Setting up the pedigree
For MCMCglmm() to work as an animal model, we indeed need to provide it with a data frame describ-
ing the population pedigree of that kind:

pedigree <- readRDS("pedigree.rds")
psych::headTail(pedigree)

animal sire dam
1 1 <NA> <NA>
2 2 <NA> <NA>
3 3 <NA> <NA>
4 4 <NA> <NA>
... ... ... ...
997 997 766 860
998 998 787 840
999 999 795 799
1000 1000 794 852

The first column has to be named animal. The founders (whose father and mother are unknown)
must be placed of the top of the array, because (more generally) a reproductive individual must
appear before its offspring. MCMCglmm can accept a pedigree with missing parents (with NA in
place of the parent’s ID).

N
ot

e

Note the presence of the animal column in the data above. This column contains the
individual IDs, which should correspond to the IDs in the animal column of the pedigree,
although the ordering does not have to be the same and IDs in the pedigree can bemissing
in the data (but not the reverse!).

‣ 3.3.3 How to use MCMCglmm() function?
In order to fit a simple model, for example to analyse Some_trait, where we only estimate additive
and residual variances, we can call the function likewise:

library(MCMCglmm)
prior <- list(R = list(V = 1, nu = 0.002),

G = list(G1 = list(V = 1, nu = 0.002)))
model <- MCMCglmm(Some_trait ~ 1,

random = ~ animal,
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3.4 Results and diagnostic of the MCMC output

family = "gaussian",
prior = prior,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
thin = 10)

The fist argument Some_trait ~ 1 is a R formula giving the response variable (Some_trait, i.e.
the phenotypic trait we want to analyse) according to some fixed effects (here none, we only specify
an intercept with ~ 1, which corresponds to our parameter 𝜇 in Equation 5). The argument random
= ~ animal set the random effects: animal is a reserved variable to fit the additive genetic effect
(in other words, we are stating the model we want to estimate 𝑉A). The argument family set the
distribution to use for the data (here gaussian for a normally distributed trait). The argument prior
calls the list of parameters for prior distributions stored in the variable prior. Arguments pedigree
and data speak for themselves. Finally, the three last arguments are to set up the properties of the
MCMC: nitt is the total number of iterations, burnin is the number of iterations to drop at the
beginning (convergence) and thin is the number of iterations stored in memory (here, one every
ten iterations).

• 3.4 Results and diagnostic of the MCMC output
For this section, we will use “Tarsus length” as the phenotypic trait of interest.

‣ 3.4.1 Calling the function
The function is called likewise:

library(MCMCglmm)
prior <- list(R = list(V = 1, nu = 0.002),

G = list(G1 = list(V = 1, nu = 0.002)))
model <- MCMCglmm(Tarsus ~ 1,

random = ~ animal,
family = "gaussian",
prior = prior,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
thin = 10)

MCMC iteration = 0
MCMC iteration = 1000
MCMC iteration = 2000
MCMC iteration = 3000

... ...
MCMC iteration = 99000
MCMC iteration = 100000

Don’t forget to store the output of the function in a variable (here model), in order to have access
to it afterwards, e.g.:
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2e+04 6e+04 1e+05

48
.0

48
.5

49
.0

49
.5

Iterations

Trace of (Intercept)

47.5 48.5 49.5

0.
0

0.
5

1.
0

1.
5

Density of (Intercept)

N = 9000   Bandwidth = 0.04571

2e+04 6e+04 1e+05

4
5

6
7

8
9

Iterations

Trace of animal

3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Density of animal

N = 9000   Bandwidth = 0.1276

2e+04 6e+04 1e+05

3.
0

4.
0

5.
0

6.
0

Iterations

Trace of units

3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

Density of units

N = 9000   Bandwidth = 0.07077

Figure 3: Trace of the intercept 𝜇 (or population mean, left) and the variances (right). The term animal refers
to 𝑉A and the term units refers to 𝑉𝑅 .

saveRDS(model, "model_simple.rds")

The computation might take some time (even quite a long time), depending of the data, the pa-
rameters and, of course, the computer capacities.

‣ 3.4.2 Diagnostic of the MCMC
Before even looking at the estimates, the first thing to do is to check the behaviour of our MCMC
algorithm. To do so, we need to focus on convergence and effective sample size of our draws sam-
ples. The output model has two main components, which are model[["Sol"]] and model[["VCV"]]
(respectively for fixed effects and random effects variances). First of all, let’s look at the “trace” of
our chain (Figure 3):

plot(model[["Sol"]])
plot(model[["VCV"]])

Each of the three couples of graphs shows us the trace (left), i.e. the evolution of the sampled
values along the iterations. It allows us to check the convergence (we should not see any trend in
the trace) and that autocorrelation is weak (the values are widely spread, not following a traceable
path). On the right of these graphs, we have an estimation of the posterior distribution for each
component (Intercept, animal and units).

N
ot

e If MCMCglmm()was run with the option pr = TRUE, then "Sol" also contains the predicted
random effects (a.k.a. BLUPs) and thus can be very large!

From looking at Figure 3, there does not seem to be a lot of issue with auto-correlation, but we
ought to have a more detailed look. The first and main thing to do is to compute the effective sample
size from the our draws:

effectiveSize(model[["Sol"]])
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3.4 Results and diagnostic of the MCMC output

(Intercept)
8158.747

effectiveSize(model[["VCV"]])

animal units
4485.220 4792.312

We see that the effective sample size of the mean (Intercept) is larger (and actually fairly close
to the actual sample size) than the effective sample size for variance components. We need to recall
how important is the effective size parameter: the aim of MCMC is to estimate the posterior distri-
bution of the parameter of interest by sampling from it. To do so, we need the largest number of
independent values as possible, which means a large effective sample size. In practice, an effective
size above 1, 000 is recommended.

Let’s see whether these differences in effective sample size can be explained by differences in
auto-correlation (as they should):
autocorr.diag(model[["Sol"]])

(Intercept)
Lag 0 1.0000000000
Lag 10 0.0161799116
Lag 50 0.0001262994
Lag 100 -0.0046778105
Lag 500 -0.0246060779

autocorr.diag(model[["VCV"]])
animal units

Lag 0 1.000000000 1.000000000
Lag 10 0.330839721 0.277521126
Lag 50 -0.004049377 0.009542044
Lag 100 -0.014149210 -0.009103030
Lag 500 -0.008306229 0.003328340

Here Lag 10 stands for ‘autocorrelation every 10 iteration values’. Since our thin parameter was
10, this refers actually to the correlation of every sampled value with the following one. We can see
that there is little autocorrelation on the mean (Intercept). On the contrary, the autocorrelation on
variance components becomes negligible rather with a lag of 50. The best way to decide whether this
level of auto-correlation is problematic or not is rather to look at the effective sample size, whether
it is acceptable or not (as draws samples from longer chains with higher autocorrelation can have a
higher effective sample size than from a shorter chains with lesser autocorrelation).

Using MCMCglmm, the convergence is often quite fast. Here, it happens within the first hundred
of iterations (Figure 4, look at the first regime of increasing values of animal in the first 100 iterations,
and then the most stable regime after):

modelburnin <- MCMCglmm(Tarsus ~ 1,
random = ~ animal,
family = "gaussian",
prior = prior,
pedigree = pedigree,
data = data,
nitt = 500,
burnin = 1,
thin = 1)

plot(modelburnin[["VCV"]])

For more complex models, the convergence might be much longer. Note that there are diagnostic
tests of convergence, as the Heidelberg stationarity test (here, to bend the rules, the p-values must
exceed 0.05 for stationarity to hold):

heidel.diag(model[["VCV"]])
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Figure 4: Trace of the variances with only 500 iterations.

Stationarity start p-value
test iteration

animal passed 1 0.656
units passed 1 0.681

Halfwidth Mean Halfwidth
test

animal passed 5.99 0.0218
units passed 4.18 0.0117
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This kind of convergence tests do not spare one from graphically checking the MCMC
using the trace and certainly not from computing effective sample sizes (convergence
and autocorrelation issues are mostly separate!).
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The “HalfwidthMean” part of heidel.diag is not related to convergence, but try to assess
whether the chain was run long enough to get a given precision level. It can be quite
sensitive to departure from normality and is not as informative as the computation of
effective sample size in the end.

‣ 3.4.3 Results from a MCMC algorithm
The output of the MCMCglmm() function has the following structure:

summary(model)
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3.5 Computation of heritability estimate

Iterations = 10001:99991 # MCMC parameters
Thinning interval = 10
Sample size = 9000 # Actual sample size (not effect.)

DIC: 4693.942 # Somewhat like AIC

G-structure: ~animal # Random effects section

post.mean l-95% CI u-95% CI eff.samp
animal 5.992 4.529 7.408 4485 # Here is an effective sample size

R-structure: ~units # Residual variance section

post.mean l-95% CI u-95% CI eff.samp
units 4.183 3.399 5.014 4792

Location effects: Tarsus ~ 1 # Fixed effects section

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 48.71 48.20 49.24 8159 <1e-04 ***

The first part reminds us the characteristics of the sample. Then, the function gives the DIC (De-
viance Information Criterion) associated to the model. This DIC may be used for model selection¹¹,
and is akin to the AIC (with different properties). The rest of the output is separated into three sec-
tions: the first, G-structure, informs us about the variance estimates of the random effects (here,
we only have𝑉A, called animal); the second, R-structure, is about the residual variance estimation
(𝑉𝑅 here called units); and the third section, Location effects, gives us the results regarding the
fixed effects (here only the population mean 𝜇 called Intercept).
Concerning the two first parts, we get various information about our estimations. The column gives
us the posterior mean of the posterior distribution (actually, it is simply the mean of the MCMC
sample). However, it has to be noted that the median is sometimes a better summary statistics than
the mean, especially for very asymmetric posterior distribution. We then have the lower and upper
limits of the 95% credible interval (i.e. our parameter has a posterior probability of 0.95 to lie within
this interval). Finally, the function gives us the effective sample size associated to the parameter.
Concerning the fixed effects, we have the same information plus a pMCMC column. This latter pro-
vides a degree of significance for the parameter being away from zero¹². It is not exactly a p-value,
but provides the same kind of information. Here, the pMCMC is very low indicating strong significance
away from zero (which also makes sense when looking at the credible interval).

• 3.5 Computation of heritability estimate
One big advantage of the MCMC is the possibility to straightforwardly compute the posterior dis-
tribution of any function of the variance components. Indeed we can do this by directly computing
on the MCMC samples: because the computation is applied on each element of the MCMC samples,
it is the same as if we computed the quantity during the model estimation, using each of the param-
eters value. In doing so, we obtain a MCMC sample of the posterior distribution of the transformed

¹¹See [this discussion](https://stat.ethz.ch/pipermail/r-sig-mixed-models/2012q2/018096.html) however for the limits
of DIC and how it is computed in MCMCglmm, and many other software.

¹²To be precise, it is twice the the posterior probability of the parameter being positive or negative, whichever is the
smallest.
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3.5 Computation of heritability estimate

parameter (e.g. the heritability). Thus we have a simple way to obtain the posterior distribution of
the heritability:

herit <-
model[["VCV"]][ , "animal"] /
(model[["VCV"]][ , "animal"] + model[["VCV"]][ , "units"])

We can then use all the tools we just mentioned on the heritability:

effectiveSize(herit)

var1
4277.756

mean(herit)

[1] 0.5873107

HPDinterval(herit) # Compute the 95% credible interval

lower upper
var1 0.4867748 0.6762358
attr(,"Probability")
[1] 0.95

We can also plot the trace and the posterior density using plot (Figure 5). In the end, the heri-
tability of the tarsus length of our phoenix population is about 0.59 with 95% of posterior probability
to lie between 0.49 and 0.68.
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Figure 5: Trace (left) and posterior density (right) of the heritability.
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3.6 Adding random effects

• 3.6 Adding random effects
Now, we might want to check whether there is an effect of the habitat structure in our inference.
If related individuals tend to be found clustered in space, then we might confound the influence
of the habitat with the influence of their genetics. This, for example, happens when the habitat is
structured and offspring tend to stick with their parents’ habitat. Here, we will account for this by
including another random effect in our model: the effect of the wood the individuals are found in.

priorRE <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002),

G2 = list(V = 1, nu = 0.002)))
modelRE <- MCMCglmm(Tarsus ~ 1,

random = ~ animal + Wood,
family = "gaussian",
prior = priorRE,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
thin = 10)

We still do the usual checks and calculate the heritability including all random effects contained in
VCV (rowSums sums on all the different effects):

heritRE <- modelRE$VCV[, "animal"] / rowSums(modelRE$VCV)

We here see that the heritability is now estimated around 0.42, which is small than the 0.59 above:

mean(heritRE)

[1] 0.4167625

HPDinterval(heritRE)

lower upper
var1 0.3041095 0.5213566
attr(,"Probability")
[1] 0.95

Through this example, we can see the importance of a well defined model, including all the possibly
confounding effects to correctly estimate heritability.

• 3.7 Adding fixed effects
Now, what if we wanted to add some fixed effects as well as random effects? This is easily done in
MCMCglmm, we simply need to use the modelling formula, just as we would anywhere else in R:

modelFE <- MCMCglmm(Tarsus ~ Birth_Temp,
random = ~ animal + Wood,
family = "gaussian",
prior = priorEC,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
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3.7 Adding fixed effects

thin = 10)
summary(modelFE)

... ... ... ...

... ... ... ...

Location effects: Tarsus ~ Birth_Temp

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 45.0754 44.1486 46.0318 9000 <1e-04 ***
Birth_Temp 0.1825 0.1554 0.2095 9000 <1e-04 ***

We now have additional content in the “Location effects” part of the summary, which provides the
estimates for the slope of birth temperature on tarsus length.

Now, this might be problematic, because explaining such effect of temperature means that our
residual variance must have decreased a bit:

mean(modelRE[["VCV"]][ , "units"])
mean(modelFE[["VCV"]][ , "units"])

[1] 2.678317
[1] 1.988799

Because of that, if we compute the denominator of the heritability (a.k.a. the total phenotypic vari-
ance 𝑉P) as we did before, the heritability would be increased (Wilson 2008), although the additive
genetic variance stayed roughly the same:

mean(modelRE[["VCV"]][ , "animal"])
mean(modelFE[["VCV"]][ , "animal"])

[1] 4.369585
[1] 4.306073

heritFE_naive <-
modelFE[["VCV"]][ , "animal"] / rowSums(modelFE[["VCV"]])

mean(heritRE)
mean(heritFE_naive)

[1] 0.4167625
[1] 0.4545613

This might seem like not that much of an inflation here, but it could be much worse if our fixed
effects explained most (or even just a substantial part) of the residual variance.

Fortunately, as explained above, there is a solution to that: we can compute the variance 𝑉F
arising from the fixed effects as the variance of the predicted values (Nakagawa & Schielzeth 2013;
de Villemereuil et al. 2018). We could use the predict() function for that, but since this function was
designed to do many different things, it is not necessarily very optimal for this simple computation.
So here is a more efficient way to do it:

compute_varpred <- function(beta, design_matrix) {
var(as.vector(design_matrix %*% beta))

}
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3.8 Using a custom covariance matrix: the dominance effect

X <- modelFE[["X"]]
vf <- apply(modelFE[["Sol"]], 1, compute_varpred, design_matrix = X)

Now, let’s see if this allows us to correct our problem:

vpRE <- rowSums(modelRE[["VCV"]])
vpFE <- rowSums(modelFE[["VCV"]]) + vf
mean(vpRE)
mean(vpFE)

[1] 10.5561
[1] 10.26802

That seems much more comparable, doesn’t it? Let’s see the impact on our heritability then:

heritFE <- modelFE[["VCV"]][ , "animal"] / vpFE
mean(heritFE)

[1] 0.4221658

We have fixed our inflation problem!

• 3.8 Using a custom covariance matrix: the dominance effect

‣ 3.8.1 Adding a custom variance-covariance matrix, possible?
Whenwe specify a random effect to the function MCMCglmm(), it assumes a simple (identity) variance-
covariance matrix between the effects. An exception is when we use animal and provide a pedigree,
of course. But we can provide a custom variance-covariance matrix for a particular random effect,
using the ginverse argument. It can be used to provide a genomic relatedness matrix (GRM) instead
of a pedigree for example. Here, wewill illustrate how to do that by fitting adding a dominance effect
in the model.

‣ 3.8.2 Computation of the dominance matrix D
The first thing is to compute this dominance matrix. In absence of inbreeding, this matrix is made of
1 on the diagonal, 0.25 when individuals of the row and the column are full-siblings and 0 elsewhere.
Note that, from the dominance perspective, parent/offspring and half-sibling relationships are null
(such that only full-siblings matter)¹³. In order to compute this dominance matrix, a R package exits,
called nadiv (Wolak 2012):

library(nadiv)
listD <- makeD(pedigree)
Dinv <- listD[["Dinv"]]

starting to make D....done
starting to invert D....done

We now have the Dinv matrix (i.e. the inverse of the dominance matrix). The dominance matrix
can be obtained using listD$D. A last thing that we need to do is create a column that will refer to
the individuals, since this dominance matrix contains a value for each pair of individuals (just as the
A matrix). We can do that very simply by copying the column containing the individual IDs, the
animal column:

¹³Actually, double first cousins have a dominance correlation of 1
16 , but they are much less common compared to

full-siblings in nature.
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3.8 Using a custom covariance matrix: the dominance effect

data[["Dom"]] <- data[["animal"]]

‣ 3.8.3 How to implement dominance effects in MCMCglmm?
So, now, we have everything we need. We just need to link everything together in our model call.
The column containing the IDs is named Dom and our (inverse) dominance variance-covariance ma-
trix is named Dinv. We can link the two using the ginverse argument. Remembering to modify the
prior to add another random effect, the call will look like this:

priorD <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002),

G2 = list(V = 1, nu = 0.002),
G3 = list(V = 1, nu = 0.002)))

modelD <- MCMCglmm(Tarsus ~ Birth_Temp,
random = ~ animal + Wood + Dom,
family = "gaussian",
prior = priorD,
pedigree = pedigree,
data = data,
ginverse = list(Dom = Dinv), # Note this line
nitt = 100000,
burnin = 10000,
thin = 10)
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The model will take quite a while to run…

If we look at the summary, we can that the dominance effect seems to account for almost all of
the residual variance in the previous models. But we can also see a few problems with the effective
size of the dominance effect, and even more, of the residual variance (actually, you might also find
some issues about convergence.).

summary(modelD)

Iterations = 10001:99991
Thinning interval = 10
Sample size = 9000

DIC: -2027.532

G-structure: ~animal

post.mean l-95% CI u-95% CI eff.samp
animal 4.205 3.288 5.168 3858

~Wood

post.mean l-95% CI u-95% CI eff.samp
Wood 3.25 1.686 5.227 9000

~Dom
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Generalised animal model using MCMCglmm

post.mean l-95% CI u-95% CI eff.samp
Dom 2.129 1.557 2.751 375.9 # Here

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp
units 0.06377 0.0001456 0.3396 72.45 # Here

Location effects: Tarsus ~ Birth_Temp

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 45.0800 44.1159 46.0030 9000 <1e-04 ***
Birth_Temp 0.1820 0.1557 0.2093 9000 <1e-04 ***

The inference is behaving a bit erratically because (i) estimating the dominance effect is relatively
difficult, especially in the very simple and relatively small dataset here, (ii) there is, in truth¹⁴, no
dominance effect to explain here and (iii) as a result, there is some difficulty here to distinguish the
“dominance effect” from purely residual variance. Since this was just to illustrate how to include a
custom variance-covariance matrix, let’s just drop this failure of an inference here.

■ 4 Generalised animal model using MCMCglmm

• 4.1 A Poisson model

‣ 4.1.1 The context
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Figure 6: Distribution of the number of
phoenix revivals in our dataset.

To illustrate how to work with a count trait using a Pois-
son model, we will use a trait of our phoenix dataset:
the number of revival. Contrary to popular belief¹⁵, most
phoenix do not revive from their ashes and when they do,
they are limited in the number of times they can. In other
words, the number of revivals is limited and differ from
individuals to individuals. The number of revivals follow
the distribution shown in Figure 6, which is very likely
to be well fitted using a Poisson distribution (besides the
trait being a count trait, of course).

‣ 4.1.2 Choosing a prior
If you recall Equation 13, describing the log-Poisson GLMM, the latent trait is modelled on the log-
scale, i.e. before taking its exponential value. This has an important consequence for our choice of
a prior: because of this exponential, we expect the values of the latent trait, and even more their
variance, to be small. So, we need (or rather, it would be best for us) to incorporate this prior
knowledge into our actual prior distribution. In section 3.2.3, I described a parameter expanded
prior that is more “gentle” for variances close to zero, so we will use that prior here:

¹⁴As shocking as it might come to you, phoenix do not exist and the dataset was simulated.
¹⁵And very conveniently for the purpose of this tutorial!
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4.1 A Poisson model

priorP <- list(R = list(V = 1, nu = 1),
G = list(G1 = list(V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000),

G2 = list(V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000)))

‣ 4.1.3 Running the model
To run the model, we can use the same model as when we studied tarsus length, except we change
the response variable for Nb_Revival (obviously) and the family for a Poisson distribution:

modelP <- MCMCglmm(Nb_Revival ~ 1,
random = ~ animal + Wood,
family = "poisson", # Note the family here
prior = priorP,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
thin = 10)

MCMC iteration = 0
Acceptance ratio for liability set 1 = 0.000552

MCMC iteration = 1000
Acceptance ratio for liability set 1 = 0.433484

... ... ... ...

MCMC iteration = 1000000
Acceptance ratio for liability set 1 = 0.379682

When using a GLMM, MCMCglmm shows the acceptance ratio for the latent trait (liability set),
which should fluctuate around 0.44¹⁶. Now, we can, as always, look at the summary of the model:

summary(modelP)

Iterations = 10001:99991
Thinning interval = 10
Sample size = 9000

DIC: 2880.338

G-structure: ~animal

post.mean l-95% CI u-95% CI eff.samp
animal 0.1632 0.0561 0.284 1309

~Wood

post.mean l-95% CI u-95% CI eff.samp
Wood 0.01603 1.343e-11 0.05111 2110

¹⁶For multi-trait models, the optimal acceptance ratio decreases, with a limit at 0.22 for large dimensions.
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4.1 A Poisson model

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp
units 0.282 0.158 0.407 951.7

Location effects: Nb_Revival ~ 1

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -0.04283 -0.18289 0.10017 3786 0.559

After doing all the diagnostic checks describe above, we can see that the MCMC went quite well.

‣ 4.1.4 Computing the heritability
As mentioned in section 2.5.2, we need to account for the assumptions and structure of GLMM
to compute heritability. The way we computed the heritability up until now corresponds to the
heritability of the latent (virtual) trait (let’s call it ℎ2lat), not the actual phenotypic trait:

heritP_lat <- modelP[["VCV"]][ , "animal"] / rowSums(modelP[["VCV"]])
mean(heritP_lat)
HPDinterval(heritP_lat)

[1] 0.3535495
lower upper

var1 0.1341322 0.5907295
attr(,"Probability")
[1] 0.95

This is all well, but not necessarily what we were interested in. What we want is not the heritability
of some virtual, latent trait we assumed the existence of, but of our phenotype.

In order to get to the heritability of the trait (let’s call itℎ2obs), we can use QGglmm. Themost simple
way to do that would be to compute point estimates for 𝑉A and 𝑉P and provide them to QGglmm:

library(QGglmm)
mu_est <- mean(modelP[["Sol"]][ , "(Intercept)"])
va_est <- mean(modelP[["VCV"]][ , "animal"])
vp_est <- mean(rowSums(modelP[["VCV"]]))
QGparams(mu = mu_est,

var.a = va_est, # IMPORTANT
var.p = vp_est, # This is not the best way,
model = "Poisson.log") # please the next paragraph!

[1] "Using the closed forms for a Poisson - log model."
mean.obs var.obs var.a.obs h2.obs

1 1.206544 2.059543 0.2375566 0.1153443

We can see that the heritability of the trait (h2.obs) is much lower than the heritability computed
on the latent trait computed above (heritP_lat). But this approach has two important limitations.
First, we should not use point estimates to compute derived quantities such as the heritability, but
use the whole posterior distribution. Second (though the point is similar), we did not obtain the
uncertainty around ℎ2obs, which would be nice to have.

The good news is that we can do it properly, again using the MCMC samples to compute the
posterior distribution forℎ2obs, as we’ve done throughout section 3. It’s not as easy though, as because
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4.1 A Poisson model

it is a bit of a complex function, we cannot directly provide a vector to QGparams. We can loop over
it though. A good way to do that in R, it to use an *apply function or the library purrr. I find
the syntax of the latter to be more consise, so we will use it here, but see the package vignette for
another strategy using mapply(). So, we will use pmap_dfr(), which allows for providing a series
of parameters for a function that returns a data.frame and then “stacks” the results into one big
data.frame:

library(purrr)
paramsP <-

pmap_dfr(list(mu = modelP[["Sol"]][ , "(Intercept)"], # - This is the list
var.a = modelP[["VCV"]][ , "animal"], # | which provides our
var.p = rowSums(modelP[["VCV"]])), # | posterior distr.

QGparams, # - Calling the function
model = "Poisson.log", # - Other arguments
verbose = FALSE) # | for QGparams

mean(paramsP[["h2.obs"]])
HPDinterval(as.mcmc(paramsP[["h2.obs"]]))

[1] 0.1146387
lower upper

var1 0.03897805 0.1912676
attr(,"Probability")
[1] 0.95

Now, we obtained exactly what we wanted! It required a bit of coding effort in R, but I hope this is
relatively easy to follow here.

‣ 4.1.5 Adding the fixed effects
What if wewanted to add a fixed effect in themodel? We learned before that we could compute the𝑉F
component and add that to the denominator. For GLMM however, things are a bit more complicated
and adding𝑉F when computing𝑉P is not enough. This is because of the non-linearity introduced by
the link function (logarithm here)¹⁷. What we need to do, instead, is to provide directly the predicted
values on the latent scale to QGparams, which will use them to account for the influence of the fixed
effects.

But first, let’s add a fixed effect in our model. This will be the lunar phase at the date of birth of
the individuals:

modelPFE <-
MCMCglmm(Nb_Revival ~ Birth_Moon,

random = ~ animal + Wood,
family = "poisson",
prior = priorP,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
thin = 10)

¹⁷For more information about this, please see de Villemereuil et al. (2016) and de Villemereuil et al. (2018).

32

https://cran.r-project.org/web/packages/QGglmm/vignettes/QGglmmHowTo.pdf


4.2 A binomial model

Now, we can compute the predicted values for each iteration of the MCMC (using map() from the
purrr library¹⁸):

X <- modelPFE[["X"]]
predict <- map(1:nrow(modelPFE[["Sol"]]),

~ as.vector(X %*% modelPFE[["Sol"]][., ]))

Then, it becomes relatively easy to use these predicted values in QGparams() instead of providing
the intercept mu as above:

paramsPFE <-
pmap_dfr(list(predict = predict,

var.a = modelPFE[["VCV"]][ , "animal"],
var.p = rowSums(modelPFE[["VCV"]])),

QGparams,
model = "Poisson.log",
verbose = FALSE)

mean(paramsPFE[["h2.obs"]])
HPDinterval(as.mcmc(paramsPFE[["h2.obs"]]))

[1] 0.1005345
lower upper

var1 0.04361177 0.1581883
attr(,"Probability")
[1] 0.95

And done! We properly integrated the influence of the fixed effects, all while using the posterior
distribution from the MCMC inference. Pretty neat, isn’t it?

• 4.2 A binomial model
Phoenix come into two colours: golden or white plumage. Is this heritable? Let’s study this.

‣ 4.2.1 Some theory
The usual model to study binary traits is something called a threshold model. In this model, we
assume a (virtual, again) Gaussian trait named “liability”, which when it goes (or not) over a given
threshold triggers the expression of one of the binary phenotype we want to study (Figure 7, left).
This model was developed by Wright (1934). An interesting thing is that when we use a GLMM
with a binomial distribution and a probit link, we use a model that is equivalent to this threshold
model (Figure 7, right; see de Villemereuil et al. 2016 and de Villemereuil 2018 for more explanation
on this subject). The only thing we need to go from the latent scale of a GLMM to the liability scale
of a threshold model is to add the so-called “link variance” to the denominator (which is equal to 1
for a probit link, and 𝜋2

3 for a logit link, see e.g. Nakagawa & Schielzeth 2010). There are two main
interests in computing the heritability on the liability scale, rather than on the latent scale. First,
given the historical importance of the threshold model, it makes the heritability estimates of binary
traits available in the literature more comparable. Second, since the observed trait is assumed to
be a deterministic output of the liability scale (see Figure 7), it can be considered as “closer” to the
actual phenotype.

¹⁸lapply() works just as well, of course!
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Figure 7: Left, threshold model: a trait (named “liability”) is assumed to be Gaussian and a threshold
determines whether the observed phenotype is of one category (white or 0) or the other (golden or 1). Right,
equivalence with GLMM: There is an equivalence between a GLMM with a probit link and the threshold
model, but the mechanism is slightly different. The latent scale of a GLMM and the liability of a threshold
model are not strictly the same. While the GLMM deterministically transforms the latent scale into proba-
bility (plain grey arrows on the left) then probabilistically into the observed data scale (dashed grey arrows
on the left), the threshold model equivalent first makes a “noiser” version of the latent scale (obtaining the
liability scale, dashed grey arrow on the right) and then deterministically define the observed phenotype
(plain grey arrow). This is a very complicated graph to say that the latent scale of a GLMM is not exactly
the liability of the threshold model, we need to add a bit more variance to the latent scale to get the liability
scale, see the main text.

Fortunately, MCMCglmm has a “threshold” family (Hadfield 2015) that reduces the latent and liability
scale to the same thing, so if we use that, we do not have to bother much about all these differences¹⁹.

‣ 4.2.2 Choosing a prior
Binomial models require somewhat specific priors. Indeed, it is impossible to evaluate the residual
variance 𝑉𝑅 for these kind of models²⁰. Because of this identifiability issue, we usually fix 𝑉𝑅 to 1
and estimate the variance of other random factors. Because of this, it becomes tricky to define a
good prior for 𝑉A (and other possible random effects variance). On Figure 8, we see the difference
between the inverse-Gamma priorwe used for themain part of the tutorial and a new prior (a 𝜒2 with
1 degree of freedom). We can see that while the first is heavily unbalanced and putting almost all of
its weight on 1, the second is more equally spread along the [0, 1] interval. I actually shown a while
ago that this second prior resulted in a better inference for binary traits (de Villemereuil et al. 2013,
Appendix B). I thus advice to use this 𝜒2 prior distribution when estimating heritability of binary
data. As always though, the influence of the prior distribution fade away with a sufficient sample
size. To use this new prior, we use the parameter extension with the supplementary parameters
alpha.mu and alpha.V:

¹⁹Why bothering in explaining all this, then, you wonder? Well, first, I believe all this is important to understand this
idea of “link variance” that is mentioned in the literature, andwhich only has a sense in this context of a threshold/GLMM
equivalence. Second, you might want to compare MCMCglmm results to another program, then you should recall to either
use another family like “ordinal” or remember to add this link variance (+1) to your denominator in that other program.

²⁰Indeed, whatever the value of 𝑉P = 𝑉A +𝑉𝑅 , the variance of the binary data will always be 𝑝 (1 − 𝑝) where 𝑝 is the
probability of success (and does not depend on 𝑉P).
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Figure 8: Prior density for the
heritability estimate when the
residual variance 𝑉R is fixed to
1 and the other random com-
ponent (e.g. 𝑉A) follows either
an inverse-gamma (0.001, 0.001)
distribution (in blue) or a chi-
square distribution with 1 de-
gree of freedom (in red). We can
see that the first is highly con-
centrated around 1, while the lat-
ter is more equally spread over
the [0, 1] continuum.

prior <- list(R = list(V = 1, fix = 1),
G = list(G1 = list(V = 1, nu = 1000, alpha.mu = 0, alpha.V = 1)))

‣ 4.2.3 Running the model
To run the model, we thus need to define this new prior and use the correct response variable and
family. Regarding the family, we will use “threshold” here.

priorB <- list(R = list(V = 1, fix = 1),
G = list(G1 = list(V = 1, nu = 1000, alpha.mu = 0, alpha.V = 1),

G2 = list(V = 1, nu = 1000, alpha.mu = 0, alpha.V = 1)))
modelB <- MCMCglmm(White ~ 1,

random = ~ animal + Wood,
family = "threshold",
prior = priorB,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
thin = 10)

N
ot

e

Apart from “threshold”, other possible families include “categorical” which uses a logit
link and “ordinal”, which also uses a probit link, but doesn’t merge the latent and liability
scales as explained above. Note that “threshold” usually results in better mixing of the
MCMC (Hadfield 2015).

We can now look at the summary of the model:

summary(modelB)
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4.2 A binomial model

Iterations = 10001:99991
Thinning interval = 10
Sample size = 9000

DIC: 1056.902

G-structure: ~animal

post.mean l-95% CI u-95% CI eff.samp
animal 1.147 0.4088 2.044 707.9

~Wood

post.mean l-95% CI u-95% CI eff.samp
Wood 0.3052 0.09272 0.5745 1677

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp
units 1 1 1 0 # Note here

Location effects: White ~ 1

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -0.7809 -1.1618 -0.4375 3481 <1e-04 ***

You might notice that the effective sample size for units is 0. This is because we fixed the residual
to 1, of course, so nothing to worry about.

‣ 4.2.4 Computing the heritability
We can now compute the heritability of our trait on the liability scale. Since we used the “threshold”
model, we can actually compute it the same way we always did:

heritB_liab <-
modelB[["VCV"]][ , "animal"] / rowSums(modelB[["VCV"]])

mean(heritB_liab)
HPDinterval(heritB_liab)

[1] 0.4524734
lower upper

var1 0.2880247 0.6171448
attr(,"Probability")
[1] 0.95

Im
po

rt
an

t It works here only because we used the “threshold” family! If we used the “ordinal” family,
the denominator would be:
rowSums(modelB[["VCV"]]) + 1
If we used the “categorical” family, the denominator would be:
rowSums(modelB[["VCV"]]) + (pi^2)/3
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4.2 A binomial model

We can also want to compute the heritability on the observed data scale, i.e. for the actual binary
trait. To do so, as above, we can use the QGglmmpackage, integrating over the posterior distribution
as above:

paramsB <-
pmap_dfr(list(mu = modelB[["Sol"]][ , "(Intercept)"],

var.a = modelB[["VCV"]][ , "animal"],
var.p = rowSums(modelB[["VCV"]]) - 1), # Note the - 1 here

QGparams,
model = "binom1.probit",
verbose = FALSE)

mean(paramsB[["h2.obs"]])
HPDinterval(as.mcmc(paramsB[["h2.obs"]]))

[1] 0.2617547
lower upper

var1 0.1622869 0.3584228
attr(,"Probability")
[1] 0.95

N
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e

Notice the - 1 in the definition of var.p. This is because (once again) we used the “thresh-
old” family in MCMCglmm. But also notice we used “binom1.probit” as a description of the
model. In order to resolve this discrepancy, it is needed to remove 1 from var.p to account
for the “link variance” that QGparams will add in its transformation.

‣ 4.2.5 Which estimate to report?
A question that often arise is which estimate to report? Contrary to the log-Poisson model above,
where the heritability on the latent scale is almost always unsatisfying, the case here is more subtle.

As I explained above, the liability scale has a deterministic relationship with the binary trait, in
the sense knowing its value and the threshold is enough to perfectly predict the trait²¹. Imagine
that your binary trait is not naturally binary (e.g. survival or dispersal), but was made binary when
it was measured (e.g. small/large). Then it could be argued that the actual trait is the liability and
reporting heritability on this scale would make sense. Another reason to report the heritability on
the liability scale is that it does not depend on the prevalence of the values (0/1) of the binary trait. A
last reason is tradition: almost all heritability estimates for binary traits in the literature have been
reported on the liability scale, so for the sake of comparison, there is a strong value in carrying on
the tradition.

At the same time, completely ignoring the heritability on the observed data scale can result in
spurious conclusions. Imagine you are a breeder trying to get rid of a disease of strong genetic
origin in your stock. Let’s say it affects roughly 1% of the individuals and the heritability of such
disease on the liability scale is around 0.8. Given such a high estimate, it should be relatively easy
to select against the disease, right? Well, removing the all afflicted individuals from the breeding
population (strongest possible selection) would only shift the prevalence from 1% to 0.94% in the next
generation. Each generation, it will become more and more difficult to reduce the prevalence. This

²¹Of course, since the liability is a virtual, non-existing scale, this determinism is also very virtual…
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Multi-traits models in MCMCglmm

is because selection is limited by the low prevalence of the disease²², and computing the heritability
on the observed data scale would have revealed it right away, since it equals 0.058 in this scenario!

In the end, which estimate is best to report and analyse depends on the context. At the very least,
providing the average value (prevalence of the trait in the population) is required, because it is the
key to navigate from a scale to the other (see Dempster & Lerner 1950).

■ 5 Multi-traits models in MCMCglmm

• 5.1 A Gaussian multi-traits model
In our phoenix dataset, we have two Gaussian traits: the tarsus length we have studied above and
the weight of the individuals. If tarsus length is a good predictor of overall individual size, then we
would expected weight and tarsus length to be positively correlated²³. We could even expect such
correlation to be positive both at the genetic and residual levels. Let’s try to perform the analysis.

‣ 5.1.1 A word on priors
As always, before anything, we need to look into priors. Here, we are considering simple variances,
but variance-covariance matrices (see Section 2.6). In two dimensions, such a variance-covariance
matrix is shaped like: (

𝑉1 𝐶1,2

𝐶1,2 𝑉2

)
(21)

where 𝑉𝑖 is the variance (for example additive genetic) associated to the trait 𝑖 and 𝐶1,2 is the co-
variance (for example genetic) between trait 1 and trait 2. We thus need a kind of prior distribution
relevant for matrices. To do so, MCMCglmm use a matrix distribution called inverse Wishart. It is diffi-
cult to keep using our very non-informative prior, especially as multi-trait models are complex and
thus require a bit more help to work properly.

N
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e

If you’d really like to use a prior similar to the we’ve been mostly using all along, it would
look like this:
list(R = list(V = diag(2) * 0.002 / 1.002, nu = 1.002),

G = list(G1 = list(V = diag(2) * 0.002 / 1.002, nu = 1.002)))
There might be a few bumps in the MCMC with this one, but it is less informative than
the one we will use below.

So, I often use a more “gentle” prior for multi-trait models:

prior <- list(R = list(V = diag(2), nu = 2),
G = list(G1 = list(V = diag(2), nu = 2)))

The idea here is that when nu is at least equal to the number of dimensions, then the inverse-Wishart
is behaving more “nicely”.

²²The reason this is so difficult is that the alleles at the numerous genes involved in the quantitative trait segregate at
each generation, always generating new combinations that exceeds the threshold, while at the same time making a lot
more combinations that are close but below the threshold (and ready to “strike” at the next generation).

²³Basically, a very pompous way of saying big individuals weight more…
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5.1 A Gaussian multi-traits model
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This prior is more informative than the other one above, notably for small variances. If
you have traits with very large variances, or widely different variances, scaling them to
a variance of 1 might be a good option (then rescaling the estimates is only a matter of
multiplying them by the original trait variances).

‣ 5.1.2 Using MCMCglmm() with a multi-traits model
Let’s first look at the variances of our traits :

var(data[["Tarsus"]])
var(data[["Weight"]])

[1] 10.3669
[1] 290.3217

Aswe can see, the variances are very different for the two traits. Now, MCMCglmm() can accommodate
that quite nicely, but if we want to use the more informative “gentle” prior above, a variance of 290
of one the trait is a bit high and rescaling the traits to the same variance unit might help the MCMC
process as well as help us define our prior. Let’s try:

data[["Tarsus_scl"]] <- scale(data[["Tarsus"]])
data[["Weight_scl"]] <- scale(data[["Weight"]])

To provide multiple traits to MCMCglmm(), we will use the cbind()²⁴ command in the response
part of the formula:

priorM <- list(R = list(V = diag(2), nu = 2),
G = list(G1 = list(V = diag(2), nu = 2)))

modelM <- MCMCglmm(cbind(Tarsus_scl, Weight_scl) ~ trait - 1,
random = ~ us(trait):animal,
rcov = ~ us(trait):units,
family = c("gaussian", "gaussian"),
prior = priorM,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
thin = 10)

We can see how we used cbind() to provide two traits to the model. On the other side of the
formula (after the ~), the notation trait - 1 states that we want to model a different intercept for
each trait. Note that the argument family now requires a vector with the data distribution of each
trait. Finally, the argument random has changed and a new argument rcov appeared: these two
arguments define the structure of the variance-covariance matrix for the random effects (random) or
the residual variances (rcov). The command us(trait):animal states that we define these matrix
exactly as written is Equation 21. This is the role of the function us() (for unstructured variance
model). If we simply had used random=~animal, we would have defined the following (somewhat

²⁴Careful readers will notice that in section 2.6, we mentioned that the traits were “stacked” while cbind() doesn’t
do that, since it is supposed to collate the vectors into different columns of a data frame. This is true, the R syntax here
does not translate well what is happening mathematically. More information is available in the MCMCglmm Course
Note(Hadfield 2016)
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5.1 A Gaussian multi-traits model

silly) variance-covariance matrix: (
𝑉 𝑉
𝑉 𝑉

)
(22)

Doing so, we assume that both traits have the same variance (𝑉1 = 𝑉2 = 𝑉 ) and are perfectly corre-
lated (𝜌1,2 = 1). Beside the function us(), the function idh() (for heterogeneous identity variance
model) exists, which fixes the covariances to 0. Indeed the call random=~idh(trait):animal defines
the following matrix: (

𝑉1 0
0 𝑉2

)
(23)

N
ot

e More variance models are available and listed in ?MCMCglmm manual. It is possible to
define even more complicated structures such as multiple membership model, which is
outside the scope of this tutorial.

‣ 5.1.3 Results of a multi-trait model
The previous MCMC run give us the following results:

summary(modelM)

Iterations = 10001:99991
Thinning interval = 10
Sample size = 9000

DIC: 4395.43

G-structure: ~us(trait):animal

post.mean l-95% CI u-95% CI
traitTarsus_scl:traitTarsus_scl.animal 0.5803 0.4466 0.7196
traitWeight_scl:traitTarsus_scl.animal 0.3972 0.2859 0.5106
traitTarsus_scl:traitWeight_scl.animal 0.3972 0.2859 0.5106
traitWeight_scl:traitWeight_scl.animal 0.4325 0.3146 0.5532

eff.samp
traitTarsus_scl:traitTarsus_scl.animal 4702
traitWeight_scl:traitTarsus_scl.animal 4175
traitTarsus_scl:traitWeight_scl.animal 4175
traitWeight_scl:traitWeight_scl.animal 3847

R-structure: ~us(trait):units

post.mean l-95% CI u-95% CI
traitTarsus_scl:traitTarsus_scl.units 0.4063 0.3319 0.4837
traitWeight_scl:traitTarsus_scl.units 0.2945 0.2256 0.3619
traitTarsus_scl:traitWeight_scl.units 0.2945 0.2256 0.3619
traitWeight_scl:traitWeight_scl.units 0.5753 0.4929 0.6617

eff.samp
traitTarsus_scl:traitTarsus_scl.units 5376
traitWeight_scl:traitTarsus_scl.units 5189
traitTarsus_scl:traitWeight_scl.units 5189
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5.1 A Gaussian multi-traits model

traitWeight_scl:traitWeight_scl.units 5450

Location effects: cbind(Tarsus_scl, Weight_scl) ~ trait - 1

post.mean l-95% CI u-95% CI eff.samp pMCMC
traitTarsus_scl -0.24638 -0.40717 -0.08423 9000 0.00222 **
traitWeight_scl -0.17551 -0.32480 -0.01747 9000 0.02133 *

In this summary, the notation traitTarsus_scl:traitTarsus_scl stands for the variance for
(scaled) tarsus length and traitTarsus_scl:traitWeight_scl stands for the covariance between
(scaled) tarsus length and weight. Since we scaled the traits, the variances and covariances are
below 1 and directly comparable between traits. For example, we can see that the additive genetic
variance of (scaled) tarsus length (0.58) is larger than the additive genetic variance of (scaled) weight
(0.43), while it’s the reverse regarding the residual variance (0.41 v. 0.58).

‣ 5.1.4 Computing the quantitative genetic parameters
A first thing that we can do is compute the unscaled variance estimates. It is possible to do by simply
multiplying the variance-covariance estimates by the scaling factor, i.e. the standard deviation of
the trait:

# Creating another VCV to contain unscaled variance-covariance
VCV_uscl <- modelM[["VCV"]]
# Obtaining the couple of traits for each column using regular expression
# str_match() is a very useful function from the stringr package!
library(stringr)
traits <-

str_match(colnames(VCV_uscl),
"trait([:alpha:]+)_scl\\:trait([:alpha:]+)_scl.*")[ , c(2, 3)]

# Using map2() from the purrr package (see above) to use the trait information to
# scale the variance using the correct combination of standard deviations
# (.x and .y respectively refer to the first and second arguments of map2 here)
scl_factors <-

map2_dbl(traits[ , 1], traits[ , 2],
~ attr(data[[paste0(.x, "_scl")]], "scaled:scale") *
attr(data[[paste0(.y, "_scl")]], "scaled:scale"))

# Now, we create a matrix to host our scaling factors
scl_factors <- matrix(scl_factors,

nrow = nrow(VCV_uscl),
ncol = ncol(VCV_uscl),
byrow = TRUE)

# All we need to do now is apply pairwise multiplication of
# the unscaled VCV and the scaling factors
VCV_uscl <- VCV_uscl * scl_factors
colMeans(VCV_uscl)

traitTarsus_scl:traitTarsus_scl.animal traitWeight_scl:traitTarsus_scl.animal
6.036323 21.918178

traitTarsus_scl:traitWeight_scl.animal traitWeight_scl:traitWeight_scl.animal
21.918178 126.322487

traitTarsus_scl:traitTarsus_scl.units traitWeight_scl:traitTarsus_scl.units
4.210267 16.132002
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5.1 A Gaussian multi-traits model

traitTarsus_scl:traitWeight_scl.units traitWeight_scl:traitWeight_scl.units
16.132002 166.760984

If we want, we can use VCV_uscl in the exact same way we used the VCV part of MCMCglmm() output:

effectiveSize(VCV_uscl)
heidel.diag(VCV_uscl)

We can also compute the heritability directly from this unscaled matrix, although using directly
the VCV part of the MCMCglmm() output would yield the same result (as the numerator and denomi-
nator are multiplied by the same scaling factor):

herit_tarsus <-
VCV_uscl[ , "traitTarsus_scl:traitTarsus_scl.animal"] /
(VCV_uscl[ , "traitTarsus_scl:traitTarsus_scl.animal"] +
VCV_uscl[ , "traitTarsus_scl:traitTarsus_scl.units"])

herit_weight <-
VCV_uscl[ , "traitWeight_scl:traitWeight_scl.animal"] /
(VCV_uscl[ , "traitWeight_scl:traitWeight_scl.animal"] +
VCV_uscl[ , "traitWeight_scl:traitWeight_scl.units"])

mean(herit_tarsus)
HPDinterval(herit_tarsus)
mean(herit_weight)
HPDinterval(herit_weight)

[1] 0.5876398
lower upper

var1 0.4950912 0.6804356
attr(,"Probability")
[1] 0.95
[1] 0.429853

lower upper
var1 0.33518 0.5232569
attr(,"Probability")
[1] 0.95

As expected when we compared the scaled variance coefficients, the heritability of tarsus length is
higher than the heritability of body weight. Moreover, the heritability for tarsus length is compara-
ble to our very first model on this trait²⁵.

The genetic correlation can be computed just as easily (again choosing VCV_uscl or the scaled
VCV part of the MCMCglmm() output doesn’t matter, because the scaling factors are identical in nu-
merator and denominator):

genetic_corr <-
VCV_uscl[ , "traitTarsus_scl:traitWeight_scl.animal"] /
sqrt(VCV_uscl[ , "traitTarsus_scl:traitTarsus_scl.animal"] *

VCV_uscl[ , "traitWeight_scl:traitWeight_scl.animal"])
mean(genetic_corr)
HPDinterval(genetic_corr)

²⁵Note that we have found this estimate to be inflated due to the influence of the “Wood of birth” effect, which I have
not included in the model here for the sake of simplicity. Of course, a proper estimation would require such an effect to
be added in the model!
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5.2 A non-Gaussian multi-traits model

[1] 0.7931648
lower upper

var1 0.7178254 0.8622758
attr(,"Probability")
[1] 0.95

As would be expected, there is a strong genetic correlation, around 0.79, between tarsus length (a
proxy for body size) and body weight.

‣ 5.1.5 Adding fixed effects

modelMF <- MCMCglmm(cbind(Tarsus_scl, Weight_scl) ~ trait - 1 +
trait:Birth_Temp + at.level(trait, 2):Birth_Moon,

random = ~ us(trait):animal,
rcov = ~ us(trait):units,
family = c("gaussian", "gaussian"),
prior = priorM,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
thin = 10)

You might get the following warning when running the model, which is due to the removing of one
level in at.level(trait, 2):Birth_Moon:

some fixed effects are not estimable and have been removed. Use singular.ok=TRUE
to sample these effects, but use an informative prior!

Since this is now a multi-trait model, the equivalent of the fixed-effect variance is now a variance-
covariance matrix. Let’s name it F. It can be computed as follows:

compute_vcvpred <- function(beta, design_matrix, ntraits) {
list(cov(matrix(design_matrix %*% beta, ncol = ntraits)))

}
X <- modelMF[["X"]]
F <-

flatten(
apply(modelMF[["Sol"]], 1, compute_vcvpred, design_matrix = X, ntraits = 2)

)

• 5.2 A non-Gaussian multi-traits model
We analysed the number of revival and plumage colour above, but do these two traits share some of
their genetic bases? Maybe white phoenix tend to, genetically, revive more?

‣ 5.2.1 The prior, yet again
Remember that plumage colour is a binary trait (either gold or white), so we need to fix the residual
variance to 1, using the fix parameter. Now, something I have omitted above is why we used fix
= 1: the number after fix corresponds to the trait after which all variances will be fixed. When
we have one trait, we do not have a choice (it is necessarily 1). Now that we are considering two
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5.2 A non-Gaussian multi-traits model

traits, we need to change this to fix = 2, in order to fix the variance on the second trait (and put
the binary trait in second obviously).

N
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e

Since we affect all the traits after the number provided to fix, all binary traits need to
be placed at the end of the cbind() call. For example, if we have our two traits and kept
fix = 1, then we would fix the variance for trait 1 and the trait after (trait 2), thus for
all traits. In other words, we would be fixing the residual variance for the “number of
revivals” Poisson trait as well (which we don’t want, right?).

Another aspect is that we want to construct a prior that would be weakly informative for the
small variances expected for both the Poisson (because of the exponential) and binary trait (because
the residual variance is fixed to 1) on the latent scale. There are many possibilities, but one of
the best way is to use, once again, the parameter expansion, while keeping the parameters weakly
informative toward small variances.

So, if we account for everything we said, a possible prior would be:

priorM2 <-
list(R = list(V = diag(2), nu = 2, fix = 2),

G = list(G1 = list(V = diag(2),
nu = 2,
alpha.mu = c(0,0),
alpha.V = diag(2))))

‣ 5.2.2 Running the model
The model can be run as the other multi-trait model above, except we now also specify the non-
Gaussian families we want to use:

modelM2 <- MCMCglmm(cbind(Nb_Revival, White) ~ trait - 1,
random = ~ us(trait):animal,
rcov = ~ us(trait):units,
family = c("poisson", "threshold"),
prior = priorM2,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
thin = 10)

All of this should be fairly self-explaining at this point. Note that, accordingly to what I mentioned
right above, we put the binary trait (White with family "threshold") at the end. This is important,
because the prior only fix the variance of the last trait here. We can look at the summary of the
model (in practice, do not forget to do all the convergence and effective sample size diagnostics):

summary(modelM2)

Iterations = 10001:99991
Thinning interval = 10
Sample size = 9000

DIC: 3952.293
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5.2 A non-Gaussian multi-traits model

G-structure: ~us(trait):animal

post.mean l-95% CI u-95% CI eff.samp
traitNb_Revival:traitNb_Revival.animal 0.158623 0.05773 0.2804 1276.7
traitWhite:traitNb_Revival.animal 0.007143 -0.15911 0.1845 825.1
traitNb_Revival:traitWhite.animal 0.007143 -0.15911 0.1845 825.1
traitWhite:traitWhite.animal 1.208296 0.50532 2.1279 1050.2

R-structure: ~us(trait):units

post.mean l-95% CI u-95% CI eff.samp
traitNb_Revival:traitNb_Revival.units 0.3025 0.18007 0.4275 839.6
traitWhite:traitNb_Revival.units 0.1217 -0.03041 0.2732 1152.6
traitNb_Revival:traitWhite.units 0.1217 -0.03041 0.2732 1152.6
traitWhite:traitWhite.units 1.0000 1.00000 1.0000 0.0

Location effects: cbind(Nb_Revival, White) ~ trait - 1

post.mean l-95% CI u-95% CI eff.samp pMCMC
traitNb_Revival -0.04484 -0.17495 0.08993 2773 0.502
traitWhite -0.77377 -1.08357 -0.46794 2917 <1e-04 ***

At least from the effective sample size perspective, things seem to have gone pretty well (this does
not mean convergence happened though, it requires plotting the traces and/or performing some test,
see our very first run of MCMCglmm()). The fixed residual variance is correctly assigned to the White
component.

Obtaining the parameters on the observed data scale requires a new function from the QGglmm
package, named QGmvparams() (“mv” for multivariate). In order to run the function over the MCMC
samples, we need to format a bit the output from MCMCglmm(), notably transform the "VCV" com-
ponent into real matrices:

library(QGglmm)
library(purrr)

# Formatting the output into lists
# flatten() is a purrr function that removes a level of nesting in a list
# e.g. it transforms list[[1]][[1]] into just list[[1]] which contains a vector
mu <- flatten(apply(modelM2[["Sol"]], 1, list))
# Now, we can do the same with "VCV",
# but we need to format it into a matrix as well.
# Note grep("animal", ...) which collects only columns
# related to the "animal" effect.
G <-

flatten(
apply(modelM2[["VCV"]][ , grep("animal", colnames(modelM2[["VCV"]]))],
1,
function(row) {

list(matrix(row, ncol = 2))
})

)
# Now, we apply the same logic to "units"
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5.2 A non-Gaussian multi-traits model

R <-
flatten(

apply(modelM2[["VCV"]][ , grep("units", colnames(modelM2[["VCV"]]))],
1,
function(row) {

row[4] <- row[4] - 1
list(matrix(row, ncol = 2))

})
)

# To obtain P we need to add G and R for each elements of their lists, easy:
P <- map2(G, R, `+`)

OK, this was a bit convoluted, we need now have a list for each parameter we want to provide to
QGmvparams(), which makes it now very simple to call once for each MCMC sample:

paramsM2 <-
pmap(list(mu = mu,

vcv.G = G,
vcv.P = P),

QGmvparams,
models = c("Poisson.log", "binom1.probit"),
verbose = FALSE)

Note that we now provide the variance-covariance matrices (instead of variances) as parameters,
compared to our previous call to the univariate QGparams(). We also need to provide a description
of each of our families to models.

N
ot

e The call above can take a while. But it can be easily be parallelised using the furrr package
and calling future_pmap() instead of pmap().

We now have a list that contains our parameters for each MCMC sample. However, it is better
to have a separate list for each parameter instead. Fortunately, the purrr package offers a function
to “transpose” a list, so we can format everything as wanted:

# Transposing our list so that the first level are the parameters
paramsM2 <- transpose(paramsM2)
# And to format the output in a more simple way
# abind() from the abind package transforms a list of matrices into a 3D-array
paramsM2[["mean.obs"]] <- unlist(paramsM2[["mean.obs"]])
paramsM2[["vcv.G.obs"]] <- abind::abind(paramsM2[["vcv.G.obs"]], along = 3)
paramsM2[["vcv.P.obs"]] <- abind::abind(paramsM2[["vcv.P.obs"]], along = 3)

Finally! Now, we can do whatever we want with our estimates:

apply(paramsM2[["vcv.G.obs"]], c(1, 2), mean)
apply(paramsM2[["vcv.G.obs"]], c(1, 2), function (vec) { HPDinterval(as.mcmc(vec))[1] })
apply(paramsM2[["vcv.G.obs"]], c(1, 2), function (vec) { HPDinterval(as.mcmc(vec))[2] })

[,1] [,2]
[1,] 0.232959621 0.001725556
[2,] 0.001725556 0.063911321

[,1] [,2]
[1,] 0.06411663 -0.04556620
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[2,] -0.04556620 0.04195376
[,1] [,2]

[1,] 0.41544805 0.04917209
[2,] 0.04917209 0.08803096

Note that the covariances are not significantly different from zero, since the 95% overlaps zero (-0.045
to 0.049). If we want to focus on the heritability estimates, we can compute them as:

heritM2_Pois <- (paramsM2[["vcv.G.obs"]] / paramsM2[["vcv.P.obs"]])[1, 1, ]
heritM2_Bin <- (paramsM2[["vcv.G.obs"]] / paramsM2[["vcv.P.obs"]])[2, 2, ]
mean(heritM2_Pois)
mean(heritM2_Bin)

[1] 0.1112572
[1] 0.3045554

Note that the estimates are comparable with those from the univariate models in subsection 4.1 and
subsection 4.2, as expected, especially as the correlation between the two traits is basically zero.

‣ 5.2.3 Adding some fixed effects
Imagine that we want to account for the effect of the phase of the moon, again, on our phenotype.
We can easily add the effect in our model:

modelM2F <- MCMCglmm(cbind(Nb_Revival, White) ~ trait - 1 + trait:Birth_Moon,
random = ~ us(trait):animal,
rcov = ~ us(trait):units,
family = c("poisson", "threshold"),
prior = priorM2,
pedigree = pedigree,
data = data,
nitt = 100000,
burnin = 10000,
thin = 10)

Now, we need to account for these fixed effects in our back-transformation of the estimates, as well
as everything else we did above. The first thing we need is the posterior distribution of the predicted
values:

X <- modelM2F[["X"]]
predict <- map(1:nrow(modelM2F[["Sol"]]),

~ matrix(X %*% modelM2F[["Sol"]][., ], ncol = 2))

Then, we can use the following steps as above, but we “merely” have to switch from using the
argument mu to using the argument predict in QGparams():

G <-
flatten(

apply(modelM2F[["VCV"]][ , grep("animal", colnames(modelM2F[["VCV"]]))],
1,
function(row) {

list(matrix(row, ncol = 2))
})

)
R <-
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flatten(
apply(modelM2F[["VCV"]][ , grep("units", colnames(modelM2F[["VCV"]]))],

1,
function(row) {

row[4] <- row[4] - 1
list(matrix(row, ncol = 2))

})
)

P <- map2(G, R, `+`)

Becausewe are using all the individual predictions, the computation takes awhile, so just to illustrate
here, we will only use the first MCMC iteration:

predict <- predict[1]
G <- G[1]
P <- P[1]
paramsM2F <-

pmap(list(predict = predict,
vcv.G = G,
vcv.P = P),

QGmvparams,
models = c("Poisson.log", "binom1.probit"),
verbose = FALSE)

■ 6 Alternative software
While MCMCglmm is a great piece of software, there are various reasons for trying out different
solutions, either because they are rather frequentist or using a different Bayesian framework. Here
is a list of other R packages with which we can fit animal models:

brms A Bayesian package able to fit (non-linear) mixed models, based on the STAN framework.
STAN is using a special case of MCMC, named Hamiltonian Monte Carlo (HMC), which re-
quires a bit more time to compute each iteration, but results in much less auto-correlation in
the output. Generally, this results in “faster” computation time for a given effective sample
size. But, because it is less optimised than MCMCglmm for the particular use-case of ani-
mal models, there is no general rule to predict whether brms would be more or less efficient
than MCMCglmm. There is a vignette on phylogenetic mixed model, which straightforwardly
applies to animal model as well.

animalINLA Another Bayesian package, based on the R-INLA package. INLA (Integrated Nested
Laplace Approximation) is a very fast (read “as fast as frequentist algorithms”) way to approx-
imate posterior distributions, which applies very well to linear mixed models (INLA notably
specialises in spatial analysis). Animal-INLA can fit Gaussian, binomial and (zero-inflated)
Poisson families. Of note: the last release was in 2016.

gremlin A frequentist and open source package for performing animal models using pedigrees.
The syntax is relatively close to MCMCglmm. It can however only fit Gaussian responses.
The package is still a work-in-progress with new features to come.

sommer Another frequentist, open-source package for performing animal models. The package
is rather directed toward using marker-based relatedness matrices (rather than working with
pedigrees). Just as gremlin, it can only fit Gaussian responses.
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gaston Very similar package to sommer, but even more focused on fitting models using Genome-
wide Relatedness Matrix (GRM) and other things related to quantitative genetics using ge-
nomic data.

pedigreemm A package to be able to provide a pedigree to lme4. No release since 2014.

■ 7 Some references
Regarding quantitative genetics, and notably heritability estimation, three classical textbooks are
very comprehensive (Falconer & Mackay 1996; Roff 1997; Lynch & Walsh 1998). They have com-
pleted by new references, including one focused on the quantitative genetics of wild populations
(Charmantier et al. 2014) and a very thorough one on selection and response to selection (Walsh &
Lynch 2018, a follow-up on the previous book by the same authors). A very substantial literature
has developed around the quantitative genetics of wild populations: various reviews (Kruuk 2004;
Postma & Charmantier 2007; Kruuk et al. 2008; Gienapp et al. 2017) and a guide (Wilson et al. 2010)
are available on the animal model. Regarding MCMCglmm, the course notes by its developer Jar-
rod Hadfield is a really nice and accessible teaching document about mixed models and Bayesian
statistics, as well as the package itself, of course. Some very nice and comprehensive books about
Bayesian inference include Gelman et al. (2004) and the more recent and hands-on McElreath (2020).
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