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The evolutionary basis of domestication has been a longstanding question and its genetic

architecture is becoming more tractable as more domestic species become genome-enabled.

Before becoming established worldwide, sheep and goats were domesticated in the fertile

crescent 10,500 years before present (YBP) where their wild relatives remain. Here we

sequence the genomes of wild Asiatic mouflon and Bezoar ibex in the sheep and goat

domestication center and compare their genomes with that of domestics from local, tradi-

tional, and improved breeds. Among the genomic regions carrying selective sweeps differ-

entiating domestic breeds from wild populations, which are associated among others to

genes involved in nervous system, immunity and productivity traits, 20 are common to Capra

and Ovis. The patterns of selection vary between species, suggesting that while common

targets of selection related to domestication and improvement exist, different solutions have

arisen to achieve similar phenotypic end-points within these closely related livestock species.
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P lant and animal domestication represented a major turning
point in human evolution, leading to the emergence of
farming during the Neolithic1. By providing a series of

independent long-term evolutionary experiments where plants
and animals were selected for specific traits, this process has been
of longstanding interest to evolutionary biologists including
Darwin2. Domestic species share many morphological, beha-
vioral, and physiological traits3, collectively referred to as
domestication syndromes. In animals, selection for tameness4,
changes in development rates5–7, and developmental pathways8–10

are hypothesized to have triggered domestication and the
unintentional emergence of domestication syndrome-related
characters such as piebald coat color and lop ears. Following
the attainment of tame animals, deliberate selection for improved
phenotypes related to primary (e.g., meat or milk) and secondary
(e.g., stamina or speed) domestication products took place. While
domestication triggered positive selection for many traits in
domestic species, it also led to the relaxation of selection for traits
of reduced importance in domestic conditions (such as camou-
flage coloration, twinning, sexual selection, and predator avoid-
ance4,11). Recently, genome-wide analyses have identified a
number of variants that differentiate domesticates from their wild
counterparts including in species such as chicken12, pig13, dog14,
rabbit15, cattle16, and horse17. However, evidence for trans-
specific signatures of domestication remains largely unexplored
and support for common genes related to domestication or
subsequent improvement across domestic animals remains elu-
sive. This might reflect that selection acted on species-specific
traits during domestication or that domestication traits are pre-
dominantly polygenic and/or pleiotropic in nature, allowing
selection to target different genes while resulting in similar phe-
notypes (e.g., polledness is driven by different genes in sheep and
goat18,19).

To test for common, trans-specific signatures of selection, we
took advantage of the parallel history of domestication in the
closely related sheep (Ovis aries) and goat (Capra hircus). Their
wild ancestors, the Asiatic mouflon (Ovis orientalis) and the
Bezoar ibex (Capra aegagrus) diverged during the late Miocene20,
and were domesticated ~10.5 kya (thousand years ago) in the
same region of the Middle-East (South-eastern Anatolia and the
Iranian Zagros Mountains)21,22. Since then, humans have spread
domestic sheep and goats beyond their native range, and ulti-
mately throughout the world. Importantly, unlike other common
livestock there is no evidence that they hybridized with native
wild relatives in the diffusion process out of the domestication
center23, which facilitates the investigation of the genomics
changes underlying domestication in different environments and
production systems.

Herein we sequence the genomes of wild Asiatic mouflon and
Bezoar ibex in the sheep and goat domestication center and
compare their genomes with that of domestics from local, tra-
ditional, and improved breeds, using haplotype differentiation as
the signature of selection. Wild and domestic groups support
selection for a total of 90 regions, out of which functional
annotations are available for 59, based on overlapping or close
genes. Interestingly, 20 regions are common to Capra and Ovis
and exhibit patterns of selection that vary between species. This
suggests that while common targets of selection related to
domestication and improvement exist, different solutions have
arisen to achieve similar phenotypic end-points.

Results
Sampling design. To identify genomic regions associated
with sheep and goat domestication, for both, we generated and
analyzed genome data from wild representatives and three

domestic groups in both species (Fig. 1a). In total, we generated
high-quality (12–14 fold coverage) genome sequences from 13
wild Asiatic mouflon (IROO) and 18 Bezoar ibex (IRCA), and
40 sheep and 44 goats, representing two groups of traditionally
managed populations. The first domestic group was from Iran
(IROA: 20 sheep, IRCH: 20 goats), designed to survey animals
found within the geographic envelope of the domestication cen-
ter, sympatric with their wild counterparts. The second domestic
group was from Morocco (MOOA: 20 sheep, MOCH: 20 goats),
located at the terminal end of the Southern Mediterranean
colonization route24. The third domestic group comprised a
worldwide panel of mostly industrial breeds (wpOA: 20 sheep,
wpCH: 14 goats), which we expected to have experienced
stronger selection and more complex demographic histories.
Thus, our nested sampling was designed to distinguish candidates
shared by all domestic groups from signatures of local adaptation
in traditionally managed populations (Iran and Morocco) or in
more recently intensively selected breeds (worldwide panel), in a
replicated manner for both sheep and goat.

Global patterns of genomic diversity. We identified about 33
million and 23 million single nucleotide polymorphisms (SNPs)
in Ovis and Capra, respectively (Supplementary Note 1).
Interestingly, Bezoar ibex showed lower nucleotide diversity
than Iranian goats and higher inbreeding than Iranian and
Moroccan goats (Supplementary Table 1). In contrast, nucleo-
tide diversity was higher in Asiatic mouflon than in domestic
sheep. We inferred higher genetic load in Ovis than Capra
(Supplementary Table 1). Genetic load was higher in sheep than
in mouflon with a significant increase in the domestic world
panel, while in Capra the load was instead significantly higher
for wild individuals (Supplementary Table 1 and Supplementary
Fig. 1). The inbreeding coefficient F was positively correlated
with the genetic load per homozygous position (Supplementary
Fig. 1; Pearson correlation coefficient r > 0.87 and p-value < 10−23

for both genera). Analysis of relaxation of functional constraints
related to domestication was conducted only for Ovis, as the high
genetic load observed for the IRCA group precluded this inves-
tigation. We found 277 genes with significantly higher deleterious
load in domestic sheep than in Asiatic mouflon (Supplementary
Data 1). Enrichment analysis revealed that these genes are mostly
involved in morphological changes, including adipogenesis, ana-
tomical structure, severe short stature, and cervical subluxation
(Supplementary Table 2, adjusted p-value ≤ 0.01).

When tracing the demographic history using multiple
sequentially Markovian coalescent (MSMC)25, wild and domestic
groups of the same genus showed similar effective sizes prior to
domestication (~10.5 kya) as expected with their common origin.
Capra and Ovis demonstrated different effective sizes but showed
similar patterns of fluctuation. At the time of domestication,
the size of wild populations remained stable or increased while
the effective size for domestic groups subsequently decreased,
after an initial period of growth for goats only. During the
last two millennia, wild populations declined while domestic
groups increased (see Supplementary Note 2 and Supplementary
Fig. 2).

Genetic structure analysis performed with sNMF26 within Ovis
and Capra groups showed two isolated gene pools representing
wild and domestic animals for both sheep and goat (Fig. 1b, c).
Using Treemix27 and f3 statistics28, we could not detect evidence
for recent hybridization between wild and domestic animals in
either genus (see Supplementary Note 3, Supplementary Fig. 3,
Supplementary Table 3, and Supplementary Data 2),
facilitating further comparisons aimed at detecting signatures of
selection.
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Patterns of selection. Using haplotype differentiation as the
signature of selection29 and then applying a stratified FDR fra-
mework (see Methods and Supplementary Fig. 4), we found 46
and 44 candidate regions under selection in Ovis and Capra,
respectively (Fig. 2a, Supplementary Note 4 and Supplementary
Table 4). The pattern of haplotype clustering was similar among
the three domestic groups in all such regions (Supplementary
Fig. 5). Comparisons of nucleotide diversity and haplotype clus-
tering between wild and domestic groups supported directional
positive or stabilizing selection for a total of 45 regions in sheep
and 30 regions in goats, with the remaining 15 being inferred as
having undergone relaxed or diversifying selection. Out of these
90 regions, functional annotations are available for 59, based on
overlapping or close genes (Supplementary Note 4 and Supple-
mentary Data 3), which displayed pleiotropic effects. Interestingly
the representation of the higher level GO terms for these genes
under selection differed from those of the reference build from
the Uniprot database (χ2-test, p-value ≤ 0.05) due to an over-
representation of genes related to pigmentation and, to a lesser
extent, in biological adhesion and rhythmic processes (Supple-
mentary Data 4). In livestock, most of these genes have already
been associated to phenotypic effects related to immunity (14
genes), productivity traits associated to milk composition (11
genes), meat (11 genes), and hair characteristics (4 genes), fertility
(2 genes), and neural development, and the nervous system (5
genes) (Supplementary Data 3). Most of the 1076 variants
detected in both genera showed selection signatures in non-
coding sequences (36% intergenic, 50% intronic, and 14% in up-
and downstream positions plus three exonic changes—two mis-
sense and one nonsense). For Capra, we found a significant
enrichment for intronic, upstream gene, and downstream gene
regions (Supplementary Table 5).

Importantly, the stratified FDR approach showed conver-
gence (i.e., shared signals of selection) between both genera, as
in homologous regions the proportion of significant SNPs found
under selection in Ovis increased with the stringency for
detecting selection in Capra and vice versa (see Methods and
Fig. 2b). Twenty candidate regions for selection were common
to both genera (Fig. 2a and Supplementary Data 3). As for
genus-specific regions these were associated with genes involved
in the nervous system, immunity and several improvement traits
(Table 1). Noticeably, among these genes, KITLG also presented
a higher genetic load in sheep than in Asiatic mouflon
(Supplementary Data 1), as a possible result of strong selection
in domestics.

Discussion
Genomic signatures related to domestication and/or improve-
ment were found both in response to demographic and selective
differences between wild and domestic populations. Capra and
Ovis showed opposite global patterns of genomic diversity. In
Capra, the low nucleotide diversity and high inbreeding in the
Bezoar ibex compared to goats has already been documented30.
This observation could result from the different demographic
trajectories of wild and domestic populations comprising the
recent severe decline of wild populations resulting from extensive
poaching and habitat fragmentation31. These differences could
also explain the higher genetic load in Bezoar ibex. In Ovis, wild
populations are more diverse than their domestic counterparts,
which could be due to the lower effective size in the domestics
observed between 10 and 1.5 kya (Supplementary Fig. 2). The
increased genetic load in sheep may represent a domestication
signature, where demographic bottlenecks reduced the efficacy of

0 750 1500 km

Mediterranean Sea

Black Sea

R
ed Sea

North
 Atlantic Ocean

C
aspian S

ea

Persian Gulf

Wild species - Iran (IR)

Traditional domestic breeds - Iran (IR)

Traditional domestic breeds - Morocco (MO)

World panel of domestic breeds (wp)

Sheep and goat
domestication center

Iran

Italy

France

Southern Mediterranean route

Northern Mediterranean
route

Danubiann rouroror te

M
or

oc
co

IRCA IRCH MOCH wpCHIROO IROA MOOA wpOA

K
=

2

100%

0%
100%

0%

100%

0%
100%

0%

K
=

3

K
=

2
K

=
6

n=13 n=20 n=20 n=20 n=18 n=20 n=20 n=14

b c

a

Fig. 1 Sampling with regard to the domestication center and main colonizations routes. a Sampling locations represented by the animal’s silhouettes. The
domestication center and the main colonization routes (Northern and Southern Mediterranean routes and Danubian route) are presented. Proportion of
genomes assigned to K genetic clusters for Ovis (K= 2 and K= 3) (b) and Capra (K= 2 and K= 6) (c) individuals. The number of sampled individuals (n) is
given

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03206-y ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:813 | DOI: 10.1038/s41467-018-03206-y | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


negative selection in purging deleterious mutations from the
domestic gene pool. In both Capra and Ovis the tendency for a
higher genetic load in world panels (which include industrial
breeds) than in traditionally managed populations is concordant
with such an impact of repeated bottlenecks, likely derived from
intensive selection.

When describing patterns of selection, we found genomic
signatures of selection shared between traditionally-managed
domestic populations of sheep and goat, from both the domes-
tication center (Iran), the terminal end of the Southern Medi-
terranean diffusion route (Morocco) and in more intensively
selected breeds worldwide. The most parsimonious scenario
involves selection in these genes before the divergence of these
groups. However, this does not prejudge the time and localization
of the selective events, which might have occurred during

domestication or at an early improvement step in the fertile
crescent, and/or also probably later on and elsewhere. Indeed,
evidence exists that modern domestic populations are not directly
related to the first domesticated animals due to population
replacements e.g.,32,33, or that nearly fixed domestic traits in
modern populations are due to later Neolithic improvements34.
The regions found under selection included both genes and
genomic regions devoid of genes (i.e., 17 out of 90 regions). This
could be due to a lack of functional annotation of these regions
but also to selection targeting regulatory sequences. Regardless,
almost all variants found to be under selection were in non-
coding sequences, with only two missense mutations identified.
Some of this non-genic signal might result from hitchhiking, e.g.,
to an unidentified causal mutation in coding regions, but could
also reflect selection on regulatory sequences, since it has been
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Table 1 Homologous genomic regions differentiating wilds from domestics in Ovis and Capra

Chromosome Code Gene Δπ
Ovis 1 | Capra 3 ENSOARG00000006800 | SLAMF7 Novel gene | SLAM family member 7 0.12 | 0.11
Ovis 1 | Capra 3 SLAMF1 Signaling lymphocytic activation molecule precursor 1 0.13 | 0.10
Ovis 1 | Capra 1 Intergenic None 0.09 | 0.14
Ovis 2 | Capra 2 Intergenic None 0.15 | 0.08
Ovis 3 | Capra 5 KITLG Proto-oncogene receptor tyrosine kinase ligand 0.18 | −0.15
Ovis 3 | Capra 5 KITLG Proto-oncogene receptor tyrosine kinase ligand 0.26 | −0.21
Ovis 3| Capra 5 HMGI-C High mobility group protein I-C 0.11 | 0.12
Ovis 6 | Capra 6 HERC5 | HERC6 HECT & RLD domain containing E3 ubiquitin protein ligase 5 | 6 0.24 | −0.11
Ovis 6 | Capra 6 SLC34A2 | Intergenic Solute carrier family 34 member 2 | None 0.18 | 0.23
Ovis 7 | Capra 10 Intergenic None 0.08 | 0.20
Ovis 9 | Capra 14 POP1 Ribonuclease P/MRP subunit −0.03 | 0.11
Ovis 10 | Capra 12 NBEA Neurobeachin 0.11 | 0.16
Ovis 10 | Capra 12 CRYL1 Crystallin lambda 1 0.01 | 0.19
Ovis 11 | Capra 19 RNF213 Ring finger protein 213 0.13 | −0.26
Ovis 15 | Capra 15 U1 | HBE1 U1 spliceosomal RNA | Hemoglobin subunit epsilon-1 0.22 | 0.09
Ovis 16 | Capra 20 TRIP13 | SLC12A7 Thyroid hormone receptor interactor 13 | Solute carrier family 12

member 7
0.16 | −0.16

Ovis 20 | Capra 23 SUPT3H SPT3 homolog, SAGA and STAGA complex component 0.08 | 0.06
Ovis 20 | Capra 23 EXOC2 | DUSP22 Exocyst complex component 2 | Dual specificity phosphatase 22 0.25 | 0.03
Ovis 24 | Capra 25 HBM | LUC7L Hemoglobin subunit Mu | LUC like 7 0.33 | 0.12
Ovis 26 | Capra 27 MTMR7 Myotubularin related protein 7 0.15 | 0.07

When different in both genera, information is given for Ovis | Capra. Positive Δπ indicates a lower diversity in domestics (e.g., directional positive or stabilizing selection in domestics) while negative
values indicate a lower diversity in the wilds (e.g., diversifying selection / relaxation in domestics or recent positive selection in the wilds). The phenotypic effects presented are inferred from the
bibliography and classified in a livestock perspective. The Uniprot GO terms associated to these genes are available from Supplementary Data 4
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shown that selective sweeps differentiating sheep from mouflon
are enriched for coding genes and regulatory elements35.

Importantly, 20 genomic regions were identified as being under
selection in both Ovis and Capra. Interestingly, four genes show
pleiotropic effects and have been related to phenotypic effects in
several livestock species. KITLG has known associations with
neural stem cell systems36, coat color in mammals37, and on litter
size in goats38. HMGI-C is a major candidate for dwarfism in
chickens39 and MTMR7 is involved in fatty acid composition in
pigs40. NBEA is associated with wool crimping in sheep41, but is
also involved in neurotransmission42 and may play a role on
behavior in cattle43. Thus, the pleiotropic nature of these genes
may have facilitated early domestication and/or subsequent
improvement through behavioral changes and selection for pro-
ductivity traits8,10.

Of the 20 selection candidates common to sheep and goat,
14 selection signatures were congruent in both species. Inter-
estingly, however, for KITLG (2 regions) and four other
regions, we found evidence of different selective patterns
between sheep and goat. Such contrasting signals may reflect
complex spatio-temporal selection and multiple breeding
strategies applied to these different traits. For example, for the
pleiotropic KITLG gene, the divergent signals in sheep and goat
(Fig. 3) could be explained by a relaxation of selection on coat
color in goats, as already observed in horses44 and pigs9,
whereas sheep have largely been selected for uniform fleece
color (especially for white wool). Besides this, the loss of
genome-wide diversity between wild and local domestic
populations was only observed here for the mouflon-sheep
comparison and not for goats, while inbreeding and genetic
load tend to increase in sheep and decrease in goats. While
contemporary demographic processes in wild populations may
partially explain this observation, the complex nature of the
selection signatures described here on pleiotropic genes chal-
lenges a simplistic view of the effects of domestication and
improvement on the genomes of animal species. This contrasts
with viewing domestication and subsequent artificial selection

as a uniformly directed selective processes, focused on rela-
tively canalized gene systems45.

The combination of different patterns of selection involved in
the domestication or subsequent improvement of livestock, along
with the underlying pleiotropic gene systems detected suggest a
more complex, multifaceted genetic response to a profound shift
in the life histories of domestic animals. It is noteworthy that
approximately half of the genes showing selection signatures in
Ovis, show congruent signatures in Capra. This suggests that
while common targets of selection exist within the genomes of
these species, different solutions have arisen to achieve similar
phenotypic selection goals.

Methods
Sampling. Domestic sheep (O. aries) and goats (C. hircus) were sampled in Iran
(IROA and IRCH groups, respectively) and Morocco (MOOA and MOCH groups,
respectively) for a total of 20 animals per group (Supplementary Fig. 6). These
samples were collected between January 2008 and March 2012 in the Northern part
of Morocco and between August 2011 and July 2012 in North-Western Iran, in the
frame of the Nextgen European project (Grant Agreement no. 244356) in accor-
dance with ethical regulations of the European Union Directive 86/609/EEC. Ear-
clips were collected from the distal part of the ear of randomly chosen animals, and
immediately stored in 96% ethanol for one day before being transferred in silica-gel
beads until DNA extraction.

The wild species Asiatic mouflon (O. orientalis) and Bezoar ibex (C. aegagrus)
were sampled in North-western Iran within the domestication cradle21,22. Thirteen
Asiatic mouflons and 18 Bezoar ibex tissues (respectively, IROO and IRCA groups,
Supplementary Fig. 6) were collected either from captive or recently hunted
animals, and from frozen samples available at the Iranian Department of
Environment. This individual-based sampling approach is designed to minimize
potential bias by avoiding the overrepresentation of local effects (e.g., local
inbreeding).

Additional data. Additionally, a worldwide breed panel was assembled for sheep
and goats (wpOA and wpCH, respectively). wpOA included 20 whole-genome re-
sequencing (WGS) samples at 12x coverage representing 20 different worldwide
breeds provided by the International Sheep Genome Consortium. wpCH consisted
of 14 WGS samples sequenced at 12x coverage representing 9 European indivi-
duals, i.e., 2 French Alpine, and 2 French Saanen samples sequenced by INRA, 5
Italian Saanen samples provided by Parco Tecnologico Padano, and 5 Australian
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individuals, i.e., 2 Boer, 2 Rangeland, and 1 Cashmere samples provided by the
CSIRO (Supplementary Data 5).

Production of WGS data. Genomic DNA was successfully extracted from all tissue
samples using the Macherey Nagel NucleoSpin 96 Tissue kit, adapting the man-
ufacturer's protocol. Tissue sampling was performed in MN square-well blocks to
obtain 25 mg fragments per sample. Three and a half MN square-96 blocks were
prepared, and extraction was performed using a Tecan Freedom Evo Liquid
handler following manufacturer's protocol. A pre-lysis step was carried out to
homogenize samples with 180 μl of T1 Buffer and 25 μl of proteinase K overnight at
56 °C. To adjust binding conditions, 200 μl of BQ1 buffer were added and the
sample plate was incubated 1 h at 70 °C; 200 μl of 100% ethanol were subsequently
added. Lysates were transferred to Nucleospin Tissue binding plate and a vacuum
(−0.2 bar, 5 min) was applied to remove the flow-through. Three washing steps
were done with BW and B5 buffers, respectively, and a vacuum was applied again
to discard the flow-through. Prior to the elution of genomic DNA, a Nucleospin
Tissue binding plate silica membrane was dried under vacuum with at least −0.6
bar for 10 min. The elution step was performed with 100 μl of pre-warmed BE
buffer (70 °C) and a centrifugation step at 3700 rcf for 5 min in 96-PCR wells.
Genomic DNA was stored at 4 °C to avoid freeze-thawing and tested for con-
centration (as ng/μl) using the Picogreen method and using a Nanodrop.

Whole genomes were resequenced from 500 ng of genomic DNA that were
sheared to a 150–700 bp range using the Covaris® E210 instrument for each sample
and used for Illumina® library preparation by a semi-automatized protocol. End
repair, A-tailing, and Illumina® compatible adaptors (BioScientific) ligation were
performed using the SPRIWorks Library Preparation System and SPRI TE
instrument (Beckmann Coulter) following the manufacturer’s protocol. A 300–600
bp size selection was applied to recover most of the fragments. DNA fragments
were amplified by 12 cycles of PCR using Platinum Pfx Taq Polymerase Kit (Life®

Technologies) and Illumina® adapter-specific primers. Libraries were purified with
0.8x AMPure XP beads (Beckmann Coulter), and analyzed with the Agilent 2100
Bioanalyzer (Agilent® Technologies) and qPCR quantification. Libraries were
sequenced using 100 base-length read chemistry in paired-end flow cell on the
Illumina® HiSeq2000.

Illumina paired-end reads for Ovis were mapped to the sheep reference genome
(OAR v3.1, GenBank assembly GCA_000298735.146), and for Capra to the goat
reference genome (CHIR v1.0, GenBank assembly GCA_000317765.147), using
BWA-MEM48. The BAM file produced for each individual was sorted using Picard
SortSam and improved using sequentially Picard MarkDuplicates (http://picard.
sourceforge.net), GATK RealignerTargetCreator and GATK IndelRealigner49, and
SAMtools calmd50.

Variant discovery was carried out using three different algorithms: Samtools
mpileup50, GATK UnifiedGenotyper51, and Freebayes52. Variant sites were
identified independently for each of six groups, using the multi-sample modes of
the calling algorithms: (i) 162 samples from MOOA; (ii) 20 samples from IROA;
(iii) 14 samples from IROO; (iv) 162 samples from MOCH; (v) 20 samples from
IRCH; (vi) 19 samples from IRCA. For some groups, the WGS of more individuals
were available as part of the NextGen project (see above). The samples used in the
present study were selected to obtain balanced groups of 20 individuals wherever
possible. For IRCA and IROO groups, additional samples became available at a
later stage and were added for downstream analyses. Animals with low alignment
and calling quality were removed to obtain the final data set (Supplementary
Data 5).

Within each group, there were two successive rounds of variant site quality
filtering. Filtering stage 1 merged calls together from the three algorithms, whilst
filtering out the lowest-confidence calls. A variant site passed if it was called by at
least two different calling algorithms with phred variant quality >30. An alternate
allele at a site passed if it was called by any one of the calling algorithms, and the
genotype count was >0. Filtering stage 2 used Variant Quality Score Recalibration
by GATK. First, we generated a training set of the highest-confidence variant sites
within the group where (i) the site is called by all three variant callers with phred-
scaled variant quality >100, (ii) the site is biallelic, (iii) the minor allele count is at
least 3 while counting only samples with genotype phred-scaled quality >30. The
training set was used to build a Gaussian model using the tool GATK
VariantRecalibrator using the following variant annotations from
UnifiedGenotyper: QD, HaplotypeScore, MQRankSum, ReadPosRankSum, FS, DP,
InbreedingCoefficient. A Gaussian model was applied to the full data set,
generating a VQSLOD (log odds ratio of being a true variant). Sites were filtered if
VQSLOD <cutoff value. The cutoff value was set for each group by the following:
Minimum VQSLOD = {the median value of VQSLOD for training set variants}
−3 × {the median absolute deviation VQSLOD of training set variants}. The
transition/transversion SNP ratio suggested that the chosen cutoff criterion gave
the best balance between selectivity and sensitivity.

SNPs call sets for six groups of Ovis and Capra animals were generated (i.e.,
Iranian and Moroccan domestics, and wilds for each genus). Because the analyses
performed in this study required inter-group comparisons, we created genotype
call sets at a consistent set of SNP sites for all animals from any group. For each
genus, we merged the variant call sites from its three groups, and only retained
biallelic positions without missing data. Genotypes were re-called at each biallelic
SNP site for all individuals of interest by GATK UnifiedGenotyper using the option

GENOTYPE_GIVEN_ALLELES. At this stage, the list of individuals was expanded
to include the animals belonging to the world breed panels of sheep and goat
(wpOA and wpCH) and additional wild samples that became available at this stage
(4 O. orientalis and 4 C. aegagrus). Genotypes were improved and phased within
groups by Beagle 453, and then filtered out where the genotype probability was less
than 0.95. Finally, we filtered out sites that were monomorphic across the different
subsets of individuals used in this study (see below).

In order to compare the signals of selection detected between Ovis and Capra,
we performed a cross-alignment between the two reference genomes. First, we used
the pairwise alignment pipeline from the Ensembl release 69 code base54 to align
the reference genomes of sheep (OARv3.1) and goat (CHIR1.0). This pipeline uses
LastZ55 to align at the DNA level, followed by post-processing in which aligned
blocks are chained together according to their location in both genomes. The LastZ
pairwise alignment pipeline is run routinely by Ensembl for all supported species,
but the goat is not yet included in Ensembl. To avoid bias toward either species, we
produced two different inter-specific alignments. One used sheep as the reference
genome and goat as non-reference while the other used goat as the reference
genome and sheep as non-reference. The difference is that genomic regions of the
reference species are forced to map uniquely to single loci of the non-reference
species, whereas non-reference genomic regions are allowed to map to multiple
locations of the reference species. We obtained for segments of chromosomes of
one reference genome the coordinates on the non-reference genome. Finally, for
the SNPs discovered in one genus, we used the whole genome alignment with the
reference genome of the other genus to identify the corresponding positions
(Supplementary Table 6).

Genetic structure. In order to describe the genetic diversity within groups, we
used VCFtools56 to calculate genetic variation summary statistics on the 73 indi-
viduals for Ovis (i.e., 13 IROO, 20 IROA, 20 MOOA, and 20 wpOA) and 72
individuals for Capra (i.e., 18 IRCA, 20 IRCH, 20 MOCH, and 14 wpCH). The
statistics measured were the total number of polymorphic variants (S) for the whole
set of individuals in each genus and within each group, the averaged nucleotide
diversity (π) within each group and the inbreeding coefficient (F) for each indi-
vidual. Within each genus, the differences between the wild group and each
domestic group were tested using a one-sided t-test for individual inbreeding and
genetic load values, and a two-sided Mann–Whitney test for nucleotide diversity
per site.

The overall divergence between the four groups within each genus (i.e., wild,
Iranian and Moroccan domestics, and world panel) was estimated using all biallelic
SNPs and the average weighted pairwise Fst following Weir and Cockerham57 as
implemented in VCFtools56. The genetic structure among groups was assessed with
the clustering method sNMF26, after pruning the data set to remove SNPs with
linkage disequilibrium (r²) greater than 0.2 using VCFtools. Linkage disequilibrium
(r²) was calculated between pairs of SNPs within sliding windows of 50 SNPs, with
one SNP per pair randomly removed when r² was greater than 0.2. For each sNMF
analysis, five runs of the same number of clusters (K) were performed with values
of K from 1 to 10. We used the cross-entropy criterion to identify the most likely
clustering solution, however, alternative partitions for different numbers of K were
also explored to assess how individuals were divided between clusters.

To disentangle between shared ancestry and admixture, we ran TreeMix27 to
jointly estimate population splits and subsequent admixture events using the
pruned data set used for sNMF. We ran TreeMix with the -global option to refine
our maximum likelihood inferences. We rooted the TreeMix tree with the split
between wild and domestic individuals. The block size for jackknifing was −k 500
SNPs, which approximately corresponds to 150 kb, exceeding the average blocks of
LD found in both sheep and goats. We generated a Maximum Likelihood tree with
no migration and then added migration events and examined the incremental
change in the variance explained by the model and the residual values between
individuals. The goal was to detect any potential high residual value or migration
edge between wild and domestic individuals. To further explore the statistical
relevance of possible admixture vectors identified by TreeMix (Supplementary
Table 3), we calculated the three-population test f328 as a formal test of genetic
introgression, using the qp3Pop program of the ADMIXTOOLS suite58 for each
combination of groups. For Capra, the wpCH group was divided between
Australian breeds, French breeds, and Italian breeds. Results are reported in
Supplementary Data 2.

Demographic inference. For each genus, we carried out ancestral demographic
inference analyses using the MSMC model implemented in the MSMC2 software25.
MSMC is based on the pairwise sequentially Markovian coalescent59; however, it
uses haplotypes of phased genome sequence data as input. For each analysis we
used two individuals from one group, thus 4 haplotypes. Each analysis was repeated
for another random set of two individuals, i.e., a replicate of the analysis per group.
Input and output files were generated and analyzed with the python scripts pro-
vided with the MSMC software and found at https://github.com/stschiff/msmc-
tools. Analyses parameters were kept as default, except the mutation rate that was
set to 2.5×10−8 and the generation length was set to 2 years. In order to estimate
the uncertainty on the time estimates, we varied these parameters (mutation rate of
2.5×10−8 and 1.0×10−8 in combination with generation length of 2 and 4 years)
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and provided a rough estimate of the domestication period (see Supplementary
Fig. 2).

Genetic load. Genetic load was estimated in two ways. Firstly, by calculating
genetic load for each individual as the sum of deleterious fitness effects over all
protein-coding genomic positions following the method of Librado et al.60. Briefly,
as a proxy for evolutionary constraint, we used the PhyloP scores from the 46-way
mammal alignment (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
phyloP46way/placentalMammals/). From this alignment, we identified protein-
coding sites evolving under functional constraints (phyloP score ≥1.5). For each
Ovis or Capra genome, we then investigated whether these sites were mutated. If so,
we summed the phyloP scores over all mutated sites, so that mutations in highly
constrained sites contribute proportionally more to the total load estimate. This
provided a load estimate for each sheep/goat genome. Finally, to obtain an average
load per site, we divided by the total number of analyzed positions. It is worth
noting that we conditioned on homozygous sites to avoid modeling the dominance
coefficient of mutations at heterozygous sites (e.g., recessive, intermediate, domi-
nant). Second, we compared gene-by-gene the genetic deleterious load in wild and
domesticated Ovis groups by performing a Wilcoxon test, with the alternative
hypothesis being that the domestic animals have more load than wild relatives. p-
values were corrected for multiple testing61 and we applied a threshold of adjusted
p-values < 0.05. We performed a gene ontology enrichment analysis on the set of
genes showing a significant increase in genetic load using WebGestalt62,63. As the
reference genomes are poorly annotated for genes, we relied on single-copy
orthologs between our species and human and mouse. Genes from the X chro-
mosome were excluded from the background set. We did not carry out this analysis
on Capra due to the higher inbreeding observed in the wild samples.

Detection of selection signatures. For detecting signatures of selection related to
domestication, we used all the biallelic SNPs showing a minor allele frequency
greater than 0.10 in at least one of the three groups tested (i.e., Iranian and the
Moroccan domestic groups, and the wild group for each genus). Because we
expected signatures of selection related to the domestication process to be present
in all domestic animals, we adopted the following general strategy: we tested with
hapFLK29 (see Supplementary Note 5 and Supplementary Figures 9, 10 and 11) for
each genus the wild group against each of the traditionally managed domestic
groups (i.e., Iranian and Morocco) and focused on those common regions puta-
tively under selection that were detected in both cases. Group sample sizes (n=
13–20) were compatible with the requirements of the method29. We visually
checked if the consistent signatures of selection found with hapFLK were also
present in the corresponding world panel set of each genus, but did not include
these groups in the statistical test due to their multi-breed composition. Finally, we
looked for shared signals of selection between Ovis and Capra using a stratified
FDR approach. The strategy is depicted in Supplementary Fig. 4.

We performed hapFLK tests for contrasting the wild group to each of the
Iranian and Moroccan groups in each genus. The kinship matrix was calculated
from the Reynold’s genetic distances64 between pairs of groups, using a random
subset of one percent of the variants. The inferred population tree was built using
the neighbor-joining algorithm. For each SNP, we performed the hapFLK test that
incorporates haplotypic information to increase the power to detect selective
sweeps. For each tested SNP, the hapFLK statistic calculated the deviation of
haplotypic frequencies with respect to the neutral model estimated by the kinship
matrix65. To exploit linkage disequilibrium information, hapFLK uses the Scheet
and Stephens’66 multipoint model for multilocus genotypes that can be fitted to
unphased data. One of the main applications of this model is to perform phase
estimation (fastPHASE software66). In our analysis, the model was trained on
unphased data, and therefore our analysis accounts for phase uncertainty. The
method was used to regroup local haplotypes along chromosomes in a specified
number of clusters K set to 25, using a Hidden Markov Model.

To identify the common regions putatively under selection in the two
traditionally-managed domestic groups for each genus, we combined the two
previous hapFLK analyses. For each analysis the hapFLK scores were fitted to a χ2

distribution to obtain p-values (script available at https://forge-dga.jouy.inra.fr/
projects/hapflk/documents). The results of the two contrasts between the wild
group and each of the domestic groups were combined using Stouffer’s method67

to obtain single p-values for the comparison of wild vs. domestic animals. Finally,
the FDR framework68 was applied to the whole set of SNPs to convert the
combined p-values into q-values. SNPs showing q-values < 10−2 were retained and
grouped into genomic regions when they were less than 50 kb distant from each
other.

To investigate whether the signal of selection was shared between Ovis and
Capra, we first used the cross alignment of the two reference genomes to identify
homologous segments. We then applied a stratified FDR framework69. This
approach is based on the fact that there is an inherent stratification in the tests
given the prior information in the genetic data69, because the underlying
distribution of true alternative hypotheses might be different according to the
different dynamics of various genomic regions, leading to different distributions of
p-values. This requires to obtain FDR adjusted p-values (i.e., q-values) separately
for the different strata. We searched for convergences in each genus by separating
the regions homologous to those detected in the other genus (referred as the shared

stratum) and the rest of the genome (referred as the general stratum). We extracted
the p-values separately for each of the two defined strata and then calculated q-
values through the FDR framework. These stratified q-values were the final
quantities considered for statistical significance (<10−2) to detect SNPs under
selection and merge them into the corresponding genomic regions.

To test for convergent signatures of selection differentiating wild from domestic
animals in both genera, we examined the relationship between the significance
threshold applied to q-values (that we made vary from 0.2 to 0.002) in one genus
and the estimated probability that a SNP is selected in the shared stratum of the
other genus using Storey et al.70 approach. An increase in the inferred probability
with a decrease of the threshold applied to the q-value (increase in stringency)
indicates that the more significant the region is in one genus, the more likely we
would find significant SNPs in the other genus.

We filtered out the selection signals that were not consistent among the three
domestic groups. For each detected region, we used the phased haplotypes of
individuals which were clustered using Neighbor-Joining trees based on the percent
of identity between sequences. Only regions showing consistent signals were kept
(Supplementary Fig. 5).

In order to infer if the signals of selection detected with hapFLK indicated
relaxation of selection or positive selection in the domestics, we estimated the
difference in nucleotide diversity (π) on each putative region under selection
between the wild and domestic groups. We expressed this difference as the Δπ
index, which was calculated for each genomic region as the difference between π
calculated for the wild group and the average of π for the Iranian and Moroccan
domestic groups, minus the difference in π between these two groups calculated
over the whole genome:

Δπ ¼ πwilds � πiran�moroccoð Þgenomic�region� πwilds � πiran�moroccoð Þwhole�genome

A negative value would indicate that the nucleotide diversity is lower in the wild
group compared to the average of the two domestic groups, and would be
considered as showing a relaxation of selection in these last groups, diversifying
selection in the domestics or positive selection in the wilds. Contrarily, a positive
value would indicate directional positive or stabilizing selection that occurred in the
domestic groups. We also used the haplotype clustering to manually verify in each
region if the selective sweep detected confirmed the indications given by the Δπ
index.

We conducted functional interpretations as follows. For each region under
selection, we considered the region plus 50 kb on each side to identify functional
roles and 5 kb upstream and downstream of genes and we assessed the overlap
between these coordinates to retain the genes of interest. Finally we considered that
a gene was related to a given detected region when the positions of the region and
the gene were overlapping. We then assessed what gene was the most likely
targeted by selection by considering the closest gene to the top signal, i.e., the
position of the lowest q-value within the region. Genes were functionally annotated
using Uniprot (http://www.uniprot.org/), by considering their involvement in 30
child terms (i.e., the terms’ direct descents) of the "Biological Process" category (i.e.,
GO:0008150). We retrieved all GO terms corresponding to each gene
(Supplementary Data 4) for 30 of the 33 categories, because we did not consider
three terms that were not involved in mammalian functions (i.e.,
GO:0006791 sulfur utilization, GO:0006794 phosphorus utilization, GO:0015976
carbon utilization). We performed two χ2-tests to compare the distributions of
genes in the GO categories, i.e., (i) genes under selection from genus-specific
regions versus that from homologous regions, and (ii) all genes under selection
versus the 18,689 human genes associated to GO terms in Swiss-Prot. In order to
interpret genes functions in a livestock context, we also retrieved the information
available from the literature on their phenotypic effects.

Finally, to find the SNPs within the previously detected regions that were the
most differentiated between wild and domestic groups, we used the FLK statistic.
As for hapFLK, it represents the deviation of single-marker allelic frequencies with
respect to the neutral model estimated by the kinship matrix65. The same
procedure was used to fit the scores from the two analyses to a χ2 distribution and
combine the p-values obtained as was used for the hapFLK test. However, the non-
uniform distribution of the p-values precluded applying the FDR framework and
we selected SNPs within the regions detected with hapFLK showing p-values <10−4.
For these SNPs we used the Variant Effect Predictor (VEP) annotations71 that were
generated from the Ensembl v74 sheep OARv3.1 genome annotation for Ovis
(http://www.ensembl.org/Ovis_aries/Tools/VEP) and from the goat CHIR1.0
genome annotation produced by the NCBI eukaryotic genome annotation pipeline
for Capra (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/). SNPs
were classified as intergenic, upstream and downstream (including UTRs), and
intronic and exonic positions. The differences between the distributions of SNPs
with FLK p-values <10−4 and all the SNPs used for detecting selection signatures
were examined with a χ2-test.

Data availability. Sequences and metadata data generated for the 73 Ovis and 72
Capra samples used in these analyses are publicly available. General information
and all vcf files can be found on the Ensembl website (http://projects.ensembl.org/
nextgen/). All Fastq files, Bam files, and de novo assemblies of O. orientalis and C.
aegagrus can be found on the European Nucleotide Archive (https://www.ebi.ac.uk/
ena) under the accession code of the Nextgen project (PRJEB7436).
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