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Abstract
1. Genetic adaptation to future environmental conditions is crucial to help species 

persist as the climate changes. Genome scans are powerful tools to understand 
adaptive landscapes, enabling us to correlate genetic diversity with environmen-
tal gradients while disentangling neutral from adaptive variation. However, low 
gene flow can lead to both local adaptation and highly structured populations, 
and is a major confounding factor for genome scans, resulting in an inflated num-
ber of candidate loci.

2. Here, we compared candidate locus detection in a marine mollusc (Onithochiton 
neglectus), taking advantage of a natural geographical contrast in the levels of ge-
netic structure between its populations. O. neglectus is endemic to New Zealand 
and distributed throughout an environmental gradient from the subtropical 
north to the subantarctic south. Due to a brooding developmental mode, popu-
lations tend to be locally isolated. However, adult hitchhiking on rafting kelp 
increases connectivity among southern populations.

3. We applied two genome scans for outliers (Bayescan and PCAdapt) and two 
genotype– environment association (GEA) tests (BayeScEnv and RDA). To limit 
issues with false positives, we combined results using the geometric mean of 
q- values and performed association tests with random environmental variables. 
This novel approach is a compromise between stringent and relaxed approaches 
widely used before, and allowed us to classify candidate loci as low confidence 
or high confidence.

4. Genome scans for outliers detected a large number of significant outliers in 
strong and moderately structured populations. No high- confidence GEA loci 
were detected in the context of strong population structure. However, 86 high- 
confidence loci were associated predominantly with latitudinally varying abiotic 
factors in the less structured southern populations. This suggests that the de-
gree of connectivity driven by kelp rafting over the southern scale may be insuf-
ficient to counteract local adaptation in this species.
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1  |  INTRODUC TION

In the context of climate change, adaptive variation is a critical con-
straint on a species' distribution, and understanding this variation 
will help predict a species' potential to respond to future environ-
mental conditions (Razgoura et al., 2019). Currently, the increasing 
ease of obtaining large panels of genome- wide molecular markers 
has been fuelling research on the role of adaptive genetic variation 
and the identification of genes under selection, even in non- model 
species (Nielsen et al., 2009; Pardo- Diaz et al., 2015).

Genome scans are based on the assumption that natural selection 
leaves a specific signature in adaptive loci (and in genomic regions in 
linkage disequilibrium with them) that differs from the genome- wide 
variation caused by neutral effects such as genetic drift, gene flow 
and inbreeding (Beaumont & Balding, 2004; Foll & Gaggiotti, 2008; 
Nicholson et al., 2002). Such adaptive loci (or their linked markers) 
are expected to have a distribution of allele or genotype frequencies 
among populations that do not fit the neutral expectation (Ahrens 
et al., 2018). The distribution of allele frequencies among popula-
tions can also be used as a response variable in tests of association 
with environmental factors relevant to the ecology of the organism: 
loci with significant associations are interpreted as being under nat-
ural selection due to the focal (or correlated) environmental factors 
(Ahrens et al., 2018; Bassitta et al., 2021; Dalongeville et al., 2018; 
Hoban et al., 2016; Liggins et al., 2020; Rellstab et al., 2015; Yadav 
et al., 2019).

An environment that is highly variable, or structured by a spatial 
gradient, can subject natural populations to habitat- specific selective 
pressures (Kawecki & Ebert, 2004). Permanent variation in these se-
lection pressures across populations may lead to local adaptation via 
divergent selection (Hedrick, 1986; Hedrick et al., 1976; Sanford & 
Kelly, 2011). Local adaptation should be more likely when gene flow 
is lacking among populations in these different habitats. However, 
recent evidence suggests that local adaptation is not necessarily im-
peded by gene flow, and the balance between migration and selec-
tion also depends on factors such as the strength of selection, and 
the genetic architecture of traits (Cornwell, 2020; Lenormand, 2002; 
Pespeni & Palumbi, 2013; Tigano & Friesen, 2016; Yeaman, 2015).

Natural populations with strong population structure are in-
teresting models to understand local adaptation, as they are likely 

to have low gene flow, and perhaps stronger local adaptation. 
However, it is known and expected that strong population structure 
may affect the results of genome scans by increasing the number 
of false positives (Forester et al., 2018; Frichot et al., 2015; Liggins 
et al., 2020; Meirmans, 2012). As a consequence, applying genome 
scans to strongly structured natural populations requires strategies 
to mitigate this issue.

Here, we exploited a naturally occurring contrast in the strength 
of population structure in a New Zealand endemic mollusc, 
Onithochiton neglectus, comparing contexts of strong and moderate 
population divergence, and used a new strategy to combine the re-
sults of different genome scan methods. O. neglectus is a brooding 
chiton, lacking a long- lasting pelagic larval phase and with low- motile 
adults (Creese, 1986). With a strikingly broad distribution for its low 
capacity to move, O. neglectus populations are present over a latitu-
dinal gradient of environmental factors from the subtropical north-
ern New Zealand to the subantarctic southern islands (O'Neill, 1985; 
Salloum et al., 2020). Previously, single- locus markers (COI, 16s and 
ITS- 1) detected three O. neglectus genetic clades, namely the North, 
Central and South clades (Salloum et al., 2020). Within the North 
and Central clades, populations are highly differentiated (Salloum 
et al., 2020). In contrast, within the South clade, O. neglectus pop-
ulations are less genetically structured (Nikula et al., 2012; Salloum 
et al., 2020). This is likely because connectivity among populations 
in the South clade is frequently enabled by rafting in the holdfasts 
of buoyant kelp (Durvillaea sp.), which is rarer in the north of O. ne-
glectus' distribution (Bussolini & Waters, 2015; Nikula et al., 2012; 
Salloum et al., 2020; Waters et al., 2018).

In this study, we used genome- wide SNPs to identify candidate 
loci (significant results from genome scans) in this mollusc. We com-
pared four spatial scales: a broad New Zealand- wide scale with low 
overall gene flow, including 16 O. neglectus populations from three 
genetic clades (‘NZ- wide’); a more restricted southern New Zealand 
regional scale (a subset of nine populations), experiencing higher lev-
els of gene flow due to kelp rafting (‘southern’); a North Island scale, 
including only the four populations of the North clade (‘NI’); and a 
South Island scale, comparable with the North Island in geographical 
range and including only the four South Island populations of the 
South clade (‘SI’) (Figure 1a; Table 1). We hypothesize that the strong 
structure of O. neglectus populations across a variable environment 

5. Our study supports the expectation that genome scans may be prone to errors 
in highly structured populations. Nonetheless, it also empirically demonstrates 
that careful statistical controls enable the identification of candidate loci that 
invite more detailed investigations. Ultimately, genome scans are valuable tools 
to help guide further research aiming to determine the potential of non- model 
species to adapt to future environments.

K E Y W O R D S
candidate loci, environmental adaptation, gene flow, genome scans for outliers, genotype– 
environment associations, outlier loci, population genetic structure, q- values geometric mean
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may lead to populations becoming adapted to local conditions, and 
expect less evidence of local adaptation among southern popula-
tions, which experience higher levels of gene flow and encompass 

only a subset of the entire environmental variation. Within this 
framework, we aimed to (a) compare the detection of candidate 
loci in low versus moderate gene flow scenarios and (b) determine 

F I G U R E  1  Geographical and genetic relationships among sampled populations of Onithochiton neglectus. (a) Geographical location of 
populations asnd clades. Populations included in the NI dataset are indicated with *, and in the SI dataset with +; (b) relative migration 
network (estimated using divMigrate). Each circle represents a population (colour- coded), with the intensity of arrows proportional to 
migration rate. Rates smaller than 0.05 are not plotted; (c) NZ- wide PCA for all populations over all loci; (d) NZ- wide PCA for remaining 
loci (after removing combined ‘outlier’ markers); (e) NZ- wide PCA for combined ‘outlier’ markers (combined q- value between PCAdapt and 
Bayescan smaller than 0.05). Population key: see Table 1
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whether population connectivity driven by kelp rafting counteracts 
local adaptation.

To address these aims, we first undertook demographic anal-
yses to explore how variation in the different datasets is struc-
tured. Second, we compared geographical patterns of variation 
from ‘outlier’ sets of markers (derived from significant results of 
two methods of genome scans for outliers [GSO]: PCAdapt and 
Bayescan) with those from the remaining loci, to identify po-
tentially different evolutionary histories for these sets of loci. 
Third, we tested for genotype– environment association (GEA) 
using two methods (RDA and BayeScEnv) to identify loci cor-
related with variable environmental factors across the species 
range (GEA loci hereafter). While false positives can be problem-
atic with genome scans, combining methods can achieve better 
signal- to- noise ratio, at the cost of lower power (de Villemereuil 
et al., 2014). Thus, we combined the results across the two GSO 
methods and across the two GEA approaches. To do so, we imple-
mented a novel conservative approach that uses geometric means 
of q- values between the methods. This aims to balance a mid- way 
point between taking all significant results from any method (a 
union of results, with high power but high false- positive rate) and 
only shared significant results across methods (an intersection of 
results, with low false- positive rate but low power). Furthermore, 
to identify GEA loci with a higher probability of reflecting a true 
association (high- confidence GEA loci hereafter), after combining 
q- values across methods we also excluded loci that showed asso-
ciations with randomly generated variables. Finally, we compared 
the DNA sequences of high- confidence GEA loci with a related 
chiton genome (Acanthopleura granulata) (Varney et al., 2021), to 
identify functional genomic regions.

2  |  MATERIAL S AND METHODS

Samples for this study were available from previous work (Nikula 
et al., 2012; Salloum et al., 2020); thus, no fieldwork was under-
taken. O. neglectus is not included in the New Zealand Fisheries Act 
1996 nor in the New Zealand Wildlife Act 1953; thus, ethical ap-
proval was not required.

2.1  |  Sampling, DNA extraction and genotyping- 
by- sequencing

A total of 188 samples of O. neglectus from populations distributed 
across New Zealand and its subantarctic islands were available from 
previous work (Nikula et al., 2012; Salloum et al., 2020). In all, 16 popu-
lations were included in the NZ- wide dataset (spanning 17 latitudinal 
degrees, and 167 individuals after filtering, Figure 1a, Table 1, Table 
S1). A subset of 10 of these populations was included in the southern 
dataset, representing the previously identified South clade (Salloum 
et al., 2020). One population (Christchurch) was excluded from the 
southern dataset due to excess missing genotype data (see below; final 
southern dataset spanning six latitudinal degrees, and 88 individuals, 
Table 1, Table S1). The upper North Island (NI) dataset has 45 individu-
als (two latitudinal degrees), and the South Island (SI) dataset has 43 
individuals (one latitudinal degree). Final dataset sizes for each popula-
tion ranged from 5 to 20 individuals according to how many individuals 
were collected during previous field sampling (Table 1, Table S1).

DNA extraction, initial checks of concentration and purity were 
undertaken following the protocol described in Salloum et al. (2020). 
DNA concentration was normalized and samples were submitted 

Population Population abbreviation Individuals Clade Dataset

Russell RU 14 North NZ- wide, NI

Auckland TI 12 North NZ- wide, NI

Coromandel NC 10 North NZ- wide, NI

East Cape EC 9 North NZ- wide, NI

Wellington WE 18 Central NZ- wide

Cape Palliser CP 10 Central NZ- wide

Christchurch CR 6b South NZ- widea

Dunedin DU 20 South NZ- wide, southern, SI

Akatore AK 9 South NZ- wide, southern, SI

Curio Bay CU 5 South NZ- wide, southern, SI

Stewart Is. ST 8 South NZ- wide, southern, SI

Auckland Is. AU 10 South NZ- wide, southern

Campbell Is. CA 10 South NZ- wide, southern

Antipodes Is. AN 7 South NZ- wide, southern

Bounty Is. BO 10 South NZ- wide, southern

Chatham Is. CH 9 South NZ- wide, southern

aPopulation excluded from southern and SI datasets due to high missing data.
bTwo additional individuals were sampled but did not meet genomic quality control and were 
excluded.

TA B L E  1  Sampling size per population 
and their contributions to the associated 
New Zealand wide (NZ- wide), upper North 
Island (NI), South Island (SI) and south and 
Subantarctic Islands (southern) datasets
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to AgResearch Invermay, Mosgiel, New Zealand, for genotyping- 
by- sequencing (GBS), as detailed in the Supplementary Material 
(Supporting Information 1). SNPs were called de- novo in Stacks v.2.4 
(Catchen et al., 2011; Catchen et al., 2013) for four datasets: New 
Zealand- wide across all populations (NZ- wide), within the North Island 
(NI) and South Island (SI), and within the South clade (southern). The 
Central clade was not called separately as it had only two populations, 
and the North clade is the same as the NI dataset. SNPs with minor 
allele frequency <0.05 were filtered out. To exclude loci in strong link-
age disequilibrium (LD), one SNP per rad- tag was chosen at random, 
decreasing the possibility of having SNPs across loci in LD. Finally, in-
dividuals with more than 90% missing data (two individuals from the 
Christchurch population) and rad- tags with more than 30% missing 
data were removed (full details of software and parameter settings are 
provided in Supporting Information 1, Figures S1– S3).

2.2  |  Demographic patterns

Population differentiation and genomic diversity (observed and ex-
pected heterozygosity, overall FST, and Nei's FIS) were estimated 
for all datasets, with the r package hierfstat v. 0.5- 7 (Goudet & 
Jombart, 2020). The same package was used to estimate overall ob-
served heterozygosity within each population in each dataset, and 
to check heterozygosity distribution across loci within populations. 
Principal component analyses were done with the r package lea v. 2.6.0 
(Frichot & François, 2015) for all datasets (Table S2). Allele frequencies 
were compared for all datasets with a custom R script. In addition, Weir 
and Cockerham's FST was estimated for all loci with VCFtools (Danecek 
et al., 2011) for pairwise comparisons between clades in the NZ- wide 
dataset (North– South, North- Central and Central- South). The al-
lele frequency spectrum was derived for each population NZ- wide, 
using vcf2sfs (Liu, 2020). In addition, δaδi (Gutenkunst et al., 2009) 
was used to plot 2D allele frequency spectra between North- Central, 
North– South and Central- South clades. To further analyse population 
structure in the NZ- wide dataset, a population assignment plot was 
done with the r package Adegenet v. 2.1.1 (Jombart, 2008; Jombart & 
Ahmed, 2011), as this enables the optimal number of ancestral popu-
lations and the admixture proportions of these different ancestries 
within each individual to be inferred (Jombart & Ahmed, 2011). Finally, 
directional relative migration was estimated for the NZ- wide data-
set with the DivMigrate function in the DiveRsity r package (Keenan 
et al., 2013), using the GST method (Sundqvist et al., 2016). The relative 
migration rates were then used in a Pearson's correlation test with a 
matrix of geographical distance between populations (shortest straight 
distance, in kilometres, between populations calculated using https://
www.dista nce.to, Table S3).

2.3  |  Genome scans for outliers

To identify ‘outlier’ markers, two GSO were run on each dataset 
separately, the PCA- based method PCAdapt (Luu et al., 2017) 

and the Bayesian method Bayescan (Foll & Gaggiotti, 2008). For 
PCAdapt, principal component analyses were initially undertaken 
for 50 principal components (20 for the NI and SI datasets), with 
the default 5% threshold for minor allele frequencies and no LD 
thinning (LD was controlled by the random choice of one SNP per 
rad- tag when calling SNPs). The default Mahalanobis distance 
was used as a test statistic, and p- values were corrected using the 
genomic inflation factor. The proportion of variance explained by 
the principal components was checked (Figure S4) and the analysis 
was re- run with three principal components for the NZ- wide data-
set, two principal components for the NI dataset, one for the SI 
dataset, and six for the southern dataset, using the same settings 
as above. After checking their distribution (Figures S5– S11), the 
corrected p- values were transformed into q- values with the qvalue 
package v. 2.16 in r (Storey et al., 2019). For Bayescan, runs were 
performed with the default configurations (5,000 iterations, thin-
ning interval = 10, 20 pilot runs of 5,000 length, burn- in = 50,000, 
prior odds for the neutral model = 10).

The results of both methods were combined by calculating geo-
metric means of the q- values of PCAdapt and Bayescan for each SNP, 
that is, qvalcombined =

2
√

qvalA × qvalB, where qvalA and qvalB corre-
spond to the locus q- value resulting from the two different methods. 
The geometric mean can be seen as a form of arithmetic mean on 
the logarithmic scale and, compared to the absolute scale, is there-
fore more closely linked to the natural interpretation of the q- value. 
Furthermore, for quantities such as q- values, the geometric mean 
is less sensitive to extreme values compared to the arithmetic and 
harmonic means. By combining q- values in this way, a SNP does not 
need to be significant in both methods, and strong support from one 
method (a small q- value) can outweigh no support from the other 
method (a large q- value). For example, a locus with q- value = 0.001 
in one method and 0.2 in another has a combined q- value (by the 
geometric mean) of 0.01, which is significant for a threshold (alpha) 
of 0.05. This approach recognizes that different methods have dif-
ferent assumptions and may return complementary results, but also 
reduces the effect of false positives from taking the union of signifi-
cant associations, while being less stringent than the common prac-
tice of taking the intersection of methods (Figure S12).

‘Outlier’ markers with a combined q- value smaller than an ar-
bitrarily chosen 0.05 cut- off were checked for observed hetero-
zygosity and missing data across populations. Past demographic 
patterns were inferred for the combined ‘outlier’ markers and 
for the remaining loci (i.e. having removed combined ‘outlier’ 
markers from the dataset) in the NZ- wide dataset with the pro-
gram Stairway Plot 2 (Liu & Fu, 2020), as well as for each clade 
separately. A plot of allele frequencies, a PCA and a plot of the 
distribution of overall FST were done with the combined ‘outlier’ 
markers and the remaining loci for each dataset. For comparison 
with the NI, SI and southern datasets (where SNPs were called 
independently within these groups), the genome scans, PCAs and 
allele frequency plots were also done for these groups by subsam-
pling the NZ- wide SNP dataset into the North Island, South Island 
and southern regions (Table S2).

https://www.distance.to
https://www.distance.to
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2.4  |  Genotype– environment association

The PCA- based method RDA and the Bayesian method BayeScEnv 
were used to search for loci in association with environmental vari-
ables (GEA- loci). Environmental variables (described below) were 
mean- centred and scaled to a variance of one. RDA implemented 
in the r package vegan v. 2.5.6 (Oksanen et al., 2019) does not allow 
missing data; therefore, missing loci were imputed (imputing with 
the most common genotype within the clade). In addition, the en-
vironmental variables used as predictors in the RDA should not be 
correlated (Dormann et al., 2013); thus, only variables with a squared 
correlation coefficient smaller than or equal to 0.7 with each other 
were included, leaving six semi- independent variables in the NZ- 
wide and southern datasets, and three semi- independent variables 
in the NI and SI datasets (Tables S4 and S5). The RDA performed 
was set to scale SNP loadings to unit variance. Analyses of variance 
(ANOVA) with 999 permutations were undertaken to test the RDA 
full model for significance. To obtain q- values, RDA loadings treated 
as z- scores were mean- centred and scaled to unit variance, which 
were transformed into two- tailed p- values that were converted to 
q- values using the qvalue r package (Storey et al., 2019), following 
checks of their distributions (Figures S13– S16).

For BayeScEnv (de Villemereuil & Gaggiotti, 2015), correlation 
between environmental variables is not of concern because they 
are tested independently in multiple runs of a univariate method; 
thus, all environmental variables were included. In addition, no im-
putation is required for BayeScEnv analyses. Runs were performed 
with the default configurations (5,000 iterations, thinning inter-
val = 10, 20 pilot runs of 5,000 length, burn- in = 50,000, upper 
bound for the Uniform prior of parameter g = 10, mean alpha 
prior = −1, prior probability for non- neutral models = 0.1, prior 
preference for the locus- specific model = 0.5) in the NZ- wide, NI, 
SI and southern datasets.

The environmental variables available to test in the GEA analyses 
were latitude, longitude and long- term means of monthly sea- level 
pressure (Kanamitsu et al., 2002), net shortwave, precipitation rate, 
surface pressure, total cloud cover, zonal wind velocity, meridional 
wind velocity, air temperature (Kalnay et al., 1996), ocean tempera-
ture, ocean salinity (Monterey & Levitus, 1997), salinity, sea surface 
height relative to geoid (Behringer & Xue, 2004) and sea surface tem-
perature (Ishii et al., 2005). With the exception of latitude and lon-
gitude, environmental variables were downloaded from NOAA (data 
provided by the NOAA ESRL Physical Sciences Division, Boulder, 
Colorado, USA, from their website at http://www.esrl.noaa.gov/psd/) 
as netcdf files, and converted to a data frame with the ncdf4 v. 1.16.1 
r package (Pierce, 2019). The geographical coordinates of the popula-
tions sampled and of the points where environmental data are avail-
able are not exactly matched in NOAA's satellite data; thus, the value 
of the closest point to the actual sample coordinates was used.

In addition, RDA and BayeScEnv were also run using a set of 100 
randomly generated variables, normally distributed with a mean of zero 
and standard deviation of one. Our rationale behind these runs was to 
identify loci that generated spurious genotype– environment association, 

suggesting that significant results with the true environmental data for 
these loci are more likely to be spurious association. Both methods were 
run using the same parameters as for the real environmental variables.

The results of the two GEA methods were combined using the 
same method as for GSO: calculating geometric means of the q- 
values of RDA and BayeScEnv for each locus and environmental 
variable pair, in the real and random datasets. Loci identified as sig-
nificantly associated with real variables (combined q- value <0.05) 
were then examined for association with the randomly generated 
variables. Those loci that also significantly associated with fewer 
than five random variables (i.e. 5% of the random runs) were treated 
as high- confidence associations. Since BayeScEnv runs included the 
environmental variables correlated with latitude (r2 > 0.7), q- values 
of all latitude- correlated variables were combined using the geo-
metric mean, and significant associations to latitude in the ‘broad 
sense’ are reported. High- confidence GEA loci were checked for ob-
served heterozygosity and missing data across populations.

Sequences of high- confidence GEA loci were submitted 
in a BLAST search against a custom database containing the 
Acanthopleura granulata genome and transcriptome (Varney 
et al., 2021), using the blastn algorithm with default configurations 
(Altschul et al., 1990). To identify genes and functions, the longer 
A. granulata transcriptome sequences matching our short O. neglec-
tus queries (92- base fragments) were extracted and run in another 
BLAST search against other molluscs (taxid:6447) using the nucleo-
tide (nr/nt) database, and the program selection blastn, optimizing 
for somewhat dissimilar sequences.

3  |  RESULTS

3.1  |  SNP datasets

The SNP calling pipeline resulted in a NZ- wide dataset consist-
ing of all 16 populations and 10,987 loci, with population- average 
0.2% missing data (Figure S3A, Table 1, Table S2). SNPs were called 
with a population map grouping the three clades because it resulted 
in a more complete dataset with less missing data than grouping 
by population only (average 11% missing data; Figure S3B). The 
NI dataset consists of 12,012 loci with 0.0% missing data (Figure 
S3C, Table 1, Table S2). The SI dataset consists of 7,476 loci with 
population- average 0.1% missing data (Figure S3D, Table 1, Table 
S2). The southern dataset consists of 9 populations and 13,004 loci, 
with population- average 8.7% missing data (Figure S3E, Table 1, 
Table S2). One population (Christchurch; CR) was removed from the 
SI and southern datasets due to excess missing data; note that it had 
less missing data in the NZ- wide dataset and hence is included there.

3.2  |  Demographic patterns

All population differentiation and genomic diversity analyses sup-
port the subdivision of O. neglectus into the three genetic clades 

http://www.esrl.noaa.gov/psd/
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previously identified by single- locus mtDNA and nDNA analyses 
(Salloum et al., 2020): North, Central and South. Sampled populations 
within the South clade (in SI and southern datasets) show much less 
genetic differentiation than that shown among populations within 
the other clades (Table 2). The same pattern is recovered by all anal-
yses of population structure (gene flow: Figure 1b; PCA: Figure 1c, 
Figures S17– S23; assignment plots: Figure S24), and allele frequencies 
NZ- wide show loci differentially fixed between clades (Figure S17). 
In addition, the SNP datasets subsampled from the NZ- wide data-
set (NI, SI and southern subsets) show very similar patterns to those 
datasets with SNPs called separately (NI, SI and southern specific), 
although the latter all have a larger number of loci (Figures S18– S23, 
Table S2). Distributions of pairwise FST between clades show strong 
differentiation between each of the three clades with high FST (North- 
Central = 0.713; North– South = 0.639; Central- South = 0.643, Figure 
S25). The allele frequency spectrum plots reveal a broadly different pat-
tern for all populations in the South clade as compared to populations 
from other clades, as southern populations have a higher proportion of 
low- frequency alleles (Figure S26). Note that the population allele fre-
quency spectra are based on counts from the NZ- wide datasets, and 
the larger number of South populations means the south alleles are the 
majority, and thus taken as reference. The 2D allele frequency spectra 
between clades show no correlation pattern, with most of the high- 
count alleles in one clade missing or infrequent in the other, indicating 
no evidence of introgression (Figure S27). The distribution of observed 
heterozygosity per population NZ- wide shows most loci with low het-
erozygosity (below 0.2, Figure S28, Table S6). Finally, relative migration 
estimates show much higher connectivity among populations of the 
South clade than among populations of other clades, with no support 
for migration between clades (Figure 1b, Table S7). Relative migration 
rates and   geographical distances between populations are negatively 
correlated (R = −0.41, p < 0.001, Figure S29, Tables S3 and S7).

3.3  |  Genome scans for outliers

PCAdapt identified 27% of the 10,987 NZ- wide loci as ‘outlier’ mark-
ers, 3.8% of the 12,012 loci in the NI- specific dataset, 4.1% of the 

7,476 loci in the SI- specific dataset and 9% of the 13,004 loci in the 
southern- specific dataset (Figure 2). In comparison, Bayescan iden-
tified 21% of the NZ- wide loci as ‘outlier’ markers, 0.2% of the loci 
in the NI dataset, 0.3% of the loci in the SI dataset and 1% in the 
southern dataset (Figure 2). There was a much smaller number of 
‘outlier’ markers found to be in common (intersection) between the 
two genome scan methods (Figure 2). Combining the two methods 
using the geometric mean of q- values resulted in a larger number 
of ‘outlier’ markers NZ- wide than each of the methods separately, 
and in intermediate numbers in the other datasets (Figure 2). Of the 
3,979 combined ‘outlier markers’ in the NZ- wide dataset, 35 had ob-
served heterozygosity above 0.5. In addition, 73 were completely 
missing in a population and were removed from downstream analy-
ses. In the southern dataset, out of the 795 combined ‘outlier’ mark-
ers, 290 were completely missing in one population, and 247 were 
missing from two or three populations, and all these were removed 
from downstream analyses. No ‘outlier’ marker was completely miss-
ing from populations of the NI-  and the SI- specific datasets. The al-
lele frequency spectra of the ‘outlier’ markers are broadly similar to 
that of the remaining loci for all populations (i.e. the set of loci after 
‘outlier’ markers are removed), but often have a greater proportion 
of high- frequency alleles (Figure S26). The stairway plots show a re-
cent bottleneck (between one and five thousand years ago) in both 
‘outlier’ markers and the remaining loci, but the former have a   larger 
final effective population size (Figure S30). The general pattern for 
each North, Central and South clades does not differ among differ-
ent sets of loci.

The NZ- wide population structure derived from all SNP loci 
(Figure 1c) is similar to the structure shown by combined ‘outlier’ 
markers and by the remaining loci (Figure 1d,e), all strongly sup-
porting the three genetic clades previously described (Salloum 
et al., 2020). The patterns of ‘outlier’ markers and the remaining 
loci are also broadly similar in all spatial scales (NI, SI and southern, 
Figures S17– S23), but it is clear that the remaining loci exhibit rela-
tively more differentiation among nearby populations, while ‘outlier’ 
markers may reflect higher FST overall (Figures S17– S23 and S31). 
The ‘outlier’ markers show lower heterozygosity than the remaining 
loci in most populations of all datasets, except for populations of the 
South clade in the NZ- wide dataset (Table S6).

3.4  |  Genotype– environment association

Many of the environmental variables tested are strongly correlated 
with latitude at all scales (NZ- wide, NI, SI and southern, Figure S32). 
The exceptions are precipitation rate, surface pressure, sea surface 
height relative to geoid and longitude, which are only weakly cor-
related with latitude. The RDA full model indicates a significant 
relationship between loci and the associated environmental vari-
ables (NZ- wide scale RDA full model F(5,161) = 27.05, p- value < 0.001, 
NI scale RDA full model F(3,41) = 5.95, p < 0.001, SI scale RDA full 
model F(3,39) = 1.65, p < 0.001, the southern scale RDA full model 
F(5,82) = 3.69, p < 0.001).

TA B L E  2  Overall genetic diversity and population differentiation 
(among all sampled populations and using all loci in each specific 
dataset). No. pops, number of populations included in the dataset; 
no. Inds, number of individuals included in the dataset; ho, 
observed heterozygosity; he, expected heterozygosity; Fst, FST 
based on gene diversity (gene diversity among samples/overall 
gene diversity); Fis, FIS following Nei, 1987 (= 1 − Ho/Hs)

Dataset
No. 
pops

No. 
Inds Ho He Fst Fis

NZ- wide 16 167 0.057 0.062 0.792 0.083

NI- specific 4 45 0.198 0.206 0.308 0.041

SI- specific 4 43 0.255 0.277 0.048 0.079

Southern 
specific

9 88 0.218 0.232 0.165 0.060
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The RDA analyses identified no genotype– environment associ-
ations in the NZ- wide, NI and SI datasets, but 708 associations in 
the southern dataset (5% of the loci). In comparison, BayeScEnv 
identified 3,093 associations from the New Zealand- wide dataset 
(28% of the loci), 15 from the NI dataset (0.13% of the loci), 10 from 
the SI dataset (0.13% of the loci) and 135 from the southern data-
set (1% of the loci) (Table 3, Tables S4 and S5). After combining q- 
values between RDA and BayeScEnv, and removing loci associated 
with random variables, no high- confidence GEA loci remained at the 
NZ- wide, NI and SI scales, but 86 GEA loci remained at the south-
ern scale, corresponding to 0.6% of the loci (Table 3). Of these, 81 
are associated with latitude in the broad sense, three with longi-
tude, one with precipitation rate, and one with both longitude and 
sea surface height relative to geoid (Table S4). Within the 86 high- 
confidence GEA loci, one had observed heterozygosity above 0.5, 
33 were found to be completely missing from one population, and 41 
from two or three populations, and were not included in the BLAST 
searches.

BLAST analyses of the sequences flanking the high- confidence 
SNPs against A. granulata scaffolds returned two matches, one of 
which also matched the A. granulata transcriptome (Table S8). These 

two O. neglectus loci (#14183 and #46591) are associated with lat-
itude. BLAST analysis of the A. granulata sequence flanking these 
matches did not return annotated genes in other molluscs.

4  |  DISCUSSION

To study the genetic basis of local adaptation in a mollusc species in 
the context of different geographical scales and population struc-
ture, we leveraged a natural contrast in the strength of O. neglectus 
population divergence by comparing patterns for all populations 
(NZ- wide, with strong population structure) and NI populations 
(moderate population structure) with patterns in the SI and south-
ern scales (showing lowest population structure). Our overall results 
agree with the expected artefactual inflation in the number of can-
didate loci under strong background population structure (Ahrens 
et al., 2018; de Villemereuil et al., 2014; Excoffier et al., 2009; 
Forester et al., 2016; Frichot et al., 2015; Hoban et al., 2016; Liggins 
et al., 2020; Meirmans, 2012; Storfer et al., 2018), although other 
factors known to influence genome scans cannot be ruled out 
(see below). For three of the four methods employed, the total 

F I G U R E  2  Proportion of ‘outlier’ 
markers found with each method in the 
NZ- wide, NI- , SI-  and southern- specific 
datasets. Combination represents 
the number of ‘outlier’ markers after 
combining the q- values of PCAdapt and 
Bayescan using the geometric mean; 
intersection represents the number 
of ‘outlier’ markers found in common 
between PCAdapt and Bayescan
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TA B L E  3  Number of GEA loci for each spatial scale and statistical treatment. ‘Real variables’ refer to the total number of associations with 
environmental variables; ‘5% random variables’ is the number of associations with at least 5% of the random variables (note that these loci 
are not necessarily also associated with environmental variables); ‘combined q- value’ is the number of significant GEA loci after combining 
the q- values of RDA and BayeScEnv using the geometric mean; ‘Final High- confidence loci’ are GEA loci with combined q- value <0.05 and 
not associated with >5% of the random variables. The total number of loci in each dataset is shown within parentheses

Environmental dataset Statistical treatment NZ- wide (10,987) NI (12,012) SI (7,476) Southern (13,003)

Real variables RDA 0 0 0 708

BayeScEnv 3,093 15 10 135

Combined q- value 0 0 0 171

5% random variables RDA 0 0 0 693

BayeScEnv 722 9 19 139

Combined q- value 0 2 0 90

Final High confidence 0 0 0 86
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proportion of candidate loci detected NZ- wide is much larger than 
within the other scales. Considering that 2%– 10% of the loci in a 
dataset are usually found to be significant in this type of analy-
ses (Bierne et al., 2011), our numbers of NZ- wide candidate loci 
are extremely high and are likely to include many false positives. 
However, our GEA analyses revealed 86 high- confidence loci (with 
an increased probability of being true positives) within the southern 
region. Thus, despite greater gene flow in this region, there are can-
didate loci suggesting potential for local adaptation.

Apart from population structure, there are other factors that 
can lead to an increase in false- positive rates of genome scans (GSO 
and GEA). Not all loci in the genome will follow the same evolution-
ary path, which results in some loci that are more divergent among 
populations than others (Roux et al., 2016). The higher divergence 
in such loci is not necessarily caused by non- neutral factors (Roux 
et al., 2016). For example, variation in mutation rates can produce 
genomic regions of low variability and hence mimic footprints of se-
lection (Thornton & Jensen, 2007). Recent demographic events such 
as bottlenecks can lead to unusual genealogies for different loci so 
that they coalesce at different times in the past (Hermisson, 2009; 
Thornton & Jensen, 2007). Recent research highlights the impact of 
differences in recombination rate across the genome, which tends to 
be lower near centromeres (Booker et al., 2020; Stapley et al., 2017; 
Stevison & McGaugh, 2020). Genomic regions of low recombination 
rate exhibit higher FST metrics, which leads to an increase in the rate 
of false positives (Booker et al., 2020). Introgressive hybridization 
or a recent history of shared ancestry between populations has also 
been linked to false- positive results (Excoffier et al., 2009; Pfeifer 
et al., 2020). In addition, linkage disequilibrium (LD) is of relevance 
(Price et al., 2008) but is challenging to detect without a genome 
assembly. For GEA methods in particular, the results also can be 
impacted by the specific environmental variables chosen, their 
resolution and the challenges to detect smaller- scale heteroge-
neity (Rellstab et al., 2015). All of these phenomena may produce 
significant ‘outlier’ loci in GSO or significant associations in GEA, 
but would not necessarily be ‘adaptive’ loci, highlighting the impor-
tance of distinguishing both concepts. Regardless of the cause of 
false positives in the search for adaptive loci, it is clear that limiting 
their impact should be a priority when identifying candidate loci. To 
this aim, we applied several techniques, including the combination 
of methods using the geometric mean of q- values and simulation 
of spurious environmental variables. For O. neglectus, our analyses 
do not support the existence of introgression among clades (Figure 
S27), but bottlenecks might be present (Figure S30), further increas-
ing the likelihood of outliers not due to selection. There is insuffi-
cient genomic information for this species to assess the impact of 
genome- wide variation in mutation and recombination. Ultimately, 
more genomic resources are necessary to completely disentangle 
natural selection from the confounding factors mentioned above.

O. neglectus is a valuable system for exploring the influence of 
gene flow and environmental variability on local adaptation due to 
several factors: the broad distribution of the species, spanning a 
wide latitudinal gradient of environmental factors (O'Neill, 1985); 

the species' brooding development (Creese, 1986); and the differ-
ential level of gene flow mediated by the presence or absence of 
kelp rafting (Salloum et al., 2020). The first challenge of study-
ing a system with such a strong background population struc-
ture is dealing with missing data when calling variants (Graham 
et al., 2020). For this reason, it was important to test different 
parameter combinations and population maps when identifying 
SNPs, particularly in the NZ- wide scale. The resulting dataset for 
this broader scale might be more representative of conserved re-
gions of the genome, as we aimed to reduce missing data among 
clades with the applied filters. By also analysing the North Island, 
South Island and southern populations separately, determining 
SNPs within each group (as opposed to simply splitting the original 
SNP dataset), we were able to reduce missing data, and identified 
a larger number of loci that are variable within clades, and not only 
between them (Figures S17– S23, Table S2). These within- clade 
datasets are presumably more representative of the full diversity 
of variable loci within each clade and hence were used at these 
scales in our genome scans.

4.1  |  Genome scans for outliers

PCAdapt detected a larger number of ‘outlier’ markers than 
Bayescan in all spatial scales, although both methods detected an 
unusually high number of loci NZ- wide. Combining these methods 
using the geometric mean of q- values returned intermediate values 
in the three smaller scales, but an even larger number of ‘outlier’ 
markers NZ- wide. This larger number of combined ‘outlier’ mark-
ers indicates that all these loci had relatively high support in at least 
one of the methods, leading the geometric mean to be below the 
threshold (0.05). Overall, the two methods did not detect a large 
proportion of loci in common (intersection, Figure 2), although we 
did not necessarily expect the same loci to be detected by such dif-
ferent methods given the different assumptions of the underlying 
models. The combined ‘outlier’ markers exhibit lower differentiation 
among nearby populations at all scales than the patterns exhibited 
by all the other loci (Figure 2c– e, Figures S17– S23). This could be 
interpreted within the adaptive hypothesis to indicate that similar 
selective forces may act on nearby populations and make them more 
genetically similar than expected based on the patterns from all the 
other loci. These findings are different from those of another sys-
tem with strong background population structure, the black tiger 
shrimp Penaeus monodon, in which loci consistently detected across 
four genome scan and genotype– environment association tests dis-
played the same pattern of population structure as neutral loci (Vu 
et al., 2020).

4.2  |  Genotype– environment association

Genotype– environment association methods applied to the NZ- wide 
context either identified a large proportion of GEA loci (BayeScEnv 
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method), or no associations at all (RDA method) (Table 3), but the 
lack of high- confidence GEA loci NZ- wide suggests low support for 
GEA loci identified with BayeScEnv. In the environmentally narrow 
NI and SI contexts, few significant loci were identified, none of them 
high confidence. In the southern scale, where population structure is 
weakest, but where broad environmental variation still exists, both 
methods identified significant GEA loci, and 86 of these are high 
confidence (Table 3), most of which are associated with latitudinally 
varying factors. The relatively low number of high- confidence GEA 
loci may be a consequence of the reduced environmental variation 
when compared to the NZ- wide scale.

4.3  |  Controlling false positives

There has previously been much consideration of the possible 
ways to control false- positive rates in genome scans (Lotterhos 
et al., 2017). Our novel strategy proposes to first use geometric 
means to combine q- values across methods and then, for the GEA 
methods, to remove loci that are also associated with 5% or more 
of the random variables. This approach was useful to find candidate 
loci that are less likely to be false positives and have spurious asso-
ciations, although we acknowledge that true- positive loci are likely 
to have been excluded in the process. Previous work has shown that 
considering the intersection of genome scan methods tends to focus 
the result on a true signal (de Villemereuil et al., 2014, Figure S12). 
Here, the intersection of all four genome scan methods results in 58 
candidate loci for the southern scale.

4.4  |  Implications of findings for O. neglectus

Our analyses of population structure and relative migration support 
the subdivision of O. neglectus into three, strongly isolated clades. 
There is higher connectivity within the South clade due to gene flow 
driven by kelp rafting, and minimal connectivity between clades. 
Populations in the South clade have a greater proportion of low- 
frequency alleles compared to populations in the North and Central 
clades. This may be consistent with a bottleneck in the North and 
Central clades, as previously indicated by a mitochondrial DNA 
marker (Salloum et al., 2020). Here, the allele frequency spectra- 
based stairway plots support a recent bottleneck, although we note 
that allele frequency spectra patterns can be driven by a variety of 
factors, including demographic changes, population structure and 
selection (Gattepaille et al., 2013; Keinan & Clark, 2012; Ronen 
et al., 2013).

In agreement with our initial hypothesis, we saw evidence for 
local adaptation in O. neglectus. Initially, our GSO and GEA analy-
ses appeared to identify a very large proportion of candidate loci 
potentially linked to local adaptation in the NZ- wide and in the 
southern scale. However, this perspective was modified with more 
careful and conservative consideration of these candidate loci, by 
combining q- values and removing all but the high- confidence GEA 

results using a novel approach (Table 3). By focusing attention on 
these high- confidence GEA loci, it became apparent that these 
could not be strongly supported at the NZ- wide scale. However, 
and in contrast to our initial expectation that higher rates of mi-
gration might lead to lower evidence of local adaptation, there re-
mained considerable evidence for potential local adaptation at the 
southern scale. An examination of the allele frequencies of these 
loci (Figure S33) may help to explain this phenomenon, as it is ap-
parent that most GEA loci at the broad scale derive from changes in 
fixation of alternate alleles, and they do not systematically vary in 
frequency across the environmental gradient from north to south. 
At the point of fixation, it is impossible to distinguish if drift or local 
adaptation were responsible for fixing such loci. In contrast, at the 
southern scale, most associations reflect gradual changes in allele 
frequency, which provide a more favourable context for association 
with the environment. Ultimately, the strongest evidence from this 
study reveals that higher gene flow among southern populations 
(driven by kelp rafting) does not appear to have removed the oppor-
tunity for local adaptation, and has in fact made it easier to detect 
candidate loci potentially under selection.

Most of the environmental variables tested are correlated with 
latitude, or to factors in the marine environment that vary latitudi-
nally. Interestingly, migration rate and geographical distance did not 
show strong correlation, not supporting isolation- by- distance and 
providing stronger evidence for the influence of the environment 
in driving some of the differentiation observed in these loci (Figure 
S29). There was a match of one O. neglectus high- confidence GEA 
locus to the A. granulata transcriptome, but unfortunately it was to 
a non- annotated region. A. granulata belongs to the same family as 
O. neglectus, but is not closely related, thus loci that match its tran-
scriptome are likely to be conserved genes. As for many non- model 
species, O. neglectus currently has insufficient genomic resources to 
enable identification of the function of candidate loci. As more ge-
nomes are annotated and genomic resources become increasingly 
accessible, it might soon be possible to recover the exact function 
of candidate loci even in non- model species. Such resources are par-
amount for a more thorough understanding of the genetic basis of 
local adaptation in natural populations (Hoban et al., 2016), help-
ing characterize species' responses to environmental variability. 
Ultimately, this is required for efficient management of biodiversity 
in the upheaval of our changing climate.

5  |  CONCLUSIONS

The use of genomic scans for outliers and genotype– environment 
association methods has been providing great insight into under-
standing the distribution of potentially adaptive variation in natural 
populations, which is crucial for appropriately managing biodiversity 
in a changing climate (Flanagan et al., 2018). These methods appear 
to generally perform well when assessing simple population scenar-
ios, but much development is still needed to attain the same stand-
ards for less ‘ideal’, non- model populations (Benestan et al., 2016; 
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Booker et al., 2020; Forester et al., 2016). In O. neglectus, a novel 
method was used to increase the probability of identifying a reliable 
set of candidate loci for selection, but also indicates that it is still 
a challenge to correctly identify true positives in this confounding 
scenario of population structure. However, our methods have pro-
vided powerful insight within the southern region, showing that the 
potential for local adaptation has not been eliminated by gene flow. 
Furthermore, among the high- confidence GEA loci found, we identi-
fied a functional genomic region that could have an adaptive role in 
the evolution of these populations. More empirical assessments and 
comparisons of ‘challenging’ populations can help with outlining the 
variation expected under real scenarios, prompting further devel-
opment to better accommodate such diversity of the natural world. 
In addition to the ongoing growth in the availability of genomic re-
sources, advances in methodological approaches will enable more 
comprehensive understanding of local adaptation and its underlying 
causes in the wild, leading to a better understanding of the complex 
responses of organisms to changes in their environment.
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