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Heritability of a resting heart rate
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STANISLAS cohort
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Abstract

Background: The association between resting heart rate (HR) and cardiovascular outcomes, especially heart failure, is

now well established. However, whether HR is mainly an integrated marker of risk associated with other features, or rather

a genetic origin risk marker, is still a matter for debate. Previous studies reported a heritability ranging from 14% to 65%.

Design: We assessed HR heritability in the STANISLAS family-study, based on the data of four visits performed over a

20-year period, and adjusted for most known confounding effects.

Methods: These analyses were conducted using a linear mixed model, adjusted on age, sex, tea or coffee consumption,

beta-blocker use, physical activity, tobacco use, and alcohol consumption to estimate the variance captured by additive

genetic effects, via average information restricted maximum likelihood analysis, with both self-reported pedigree and

genetic relatedness matrix (GRM) calculated from genome-wide association study data.

Results: Based on the data of all visits, the HR heritability (h2) estimate was 23.2% with GRM and 24.5% with pedigree.

However, we found a large heterogeneity of HR heritability estimations when restricting the analysis to each of the four

visits (h2 from 19% to 39% using pedigree, and from 14% to 32% using GRM). Moreover, only a little part of variance was

explained by the common household effect (<5%), and half of the variance remained unexplained.

Conclusion: Using a comprehensive analysis based on a family cohort, including the data of multiple visits and GRM, we

found that HR variability is about 25% from genetic origin, 25% from repeated measures and 50% remains unexplained.
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Introduction

Heart rate (HR) is an easy to measure phenotypic
quantitative trait that is routinely used for risk predic-
tion in the field of cardiovascular medicine. The asso-
ciation of resting HR with cardiovascular outcomes,
especially heart failure, is well established.1–5 From an
epidemiological standpoint, determining the genetic
part of this trait could further inform researchers of
the inherited nature of this important clinical factor.
Indeed, even if HR is ubiquitously perceived as a
major risk marker in clinical medicine, whether HR is
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mainly an integrated marker of risk associated with
other features, or rather a genetic origin risk marker,
is still a matter of debate.

As for many other continuous phenotypic traits,
variation of HR among individuals is influenced by gen-
etic determinants, lifestyle, and environmental factors.3

The heritability of a quantitative trait is the proportion
of variance due to genetics.6–9 More specifically, we
used here the ‘‘narrow sense’’ heritability (h2), which
refers to the proportion of phenotypic variance attrib-
utable to the additive genetic factors only.6,9–12

The heritability of resting HR in healthy subjects
varies significantly in the literature, ranging from 14%
to 34% in family-based cohort studies, and from 53%
to 65% in twin studies.1,13–18 This high variability in
heritability estimates is likely to be explained by study
design, the way a shared environment is taken into
account in a family study and the residual confounding
effects of lifestyle factors.3,14 In addition, the estimation
of heritability in a family study has been traditionally
performed using pedigree analysis, but the accuracy of
estimations can largely be improved by the recent use
of the genetic relatedness matrix (GRM), especially for
siblings.17,19 As a result, given the large variability of
estimates in the literature, HR heritability estimated in
a populational/familial setting, using GRM, that is
based on the data of multiple time points and adjusted
on most known confounding effects, could provide a
more accurate estimate of HR heritability.

The purpose of the present study is, first, to estimate
resting HR heritability using both self-reported
pedigree and the GRM calculated from genome-wide
association study (GWAS) data and, second, to evalu-
ate the contribution of longitudinal data in these
former estimations of HR heritability.

Methods

Study population

The design of the STANISLAS cohort has been previ-
ously reported.20,21 In brief, the STANISLAS cohort
study is a family-based longitudinal cohort, initially
including 4295 healthy individuals of French origin
from 1006 families living in the Lorraine region
(north-eastern France). They were first recruited from
1994 to 1995 during a medical examination and were
re-examined about every five years. At each visit, par-
ticipants underwent a medical examination, gave a
blood sample, and were interviewed by trained nurses
using a structured questionnaire, including items on
socio-demographic, medical and family history, smok-
ing status, lifestyle, diet (including alcohol consump-
tion), and anthropometric data. Moreover, the 1705
participants who took part in the fourth visit were

genotyped using the GSA chip, designed by Illumina�.
An Ethics Committee approved the study and informed
consent was obtained from all participants.

Sample

In total, four individuals from the fourth visit were
excluded from the analyses because they had atrial fib-
rillation. Characteristics of all included subjects are
listed in Table 1 (a) and (b). A total of 10,142 observa-
tions were included in the present analysis, 4928 of
which had GWAS data. The distribution of subjects
who attempted one or more visits (up to four) is
described in Table 2.

Outcome

At visit four, the resting HR was determined after 10
minutes of rest, using a standard 12-lead electrocardio-
gram. For the three other visits, HR was assessed using
clinical measures performed at rest.

Covariates

In the following analysis, we used the following as cat-
egorical covariates: sex, current smoker status, use of
beta-blockers, consumption of tea or coffee, and prac-
tice of physical activities. As the relationship between
age and HR was not linear, age was modeled using
restricted cubic splines, with five knots at fixed percent-
iles (5%, 27.5%, 50%, 72.5%, and 95%) of the
distribution.22

Household effect definition

In this family-based study, defining the common envir-
onment component of the total variance represents the
most challenging part of the work. At recruitment time,
only nuclear families with young children were included.
However, first the children grew up between visits, and
second new family members, such as a daughter-in-law
or a son-in-law, were subsequently included in the
cohort, creating new households. In order to best fit
with the common household effect for family members,
we arbitrarily decided that children aged more than
20 years old were taken out from their first nuclear
family and were attributed a new family ID. The distri-
bution of the number of members belonging to the same
household effect at each visit is reported in Figure 1.

Statistical methods

As a first step, we described heritability using parent–
offspring correlations. However, these correlations do
not account for covariates and household effect.
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We used a dedicated linear mixed model, which allowed
us to simultaneously include additive genetic effects
across the genome, common environment effects
shared by families and fixed effects. All analyses were
performed using R (version 3.5.0).

Pedigree matrix. Traditionally, the kinship or pedigree
matrix is derived from a carefully curated pedigree, join-
ing together the individuals with phenotypes from their
self-reported genealogical relationships. To this end, we
used the R package Kinship2 (https://cran.r-project.org/
web/packages/kinship2/index.html) to create the matrix

Table 1. Participant characteristics: (a) all participants; (b) participants with available genotype.

(a)

Visit 1

(n¼ 4252)

Visit 2

(n¼ 2934)

Visit 3

(n¼ 1319)

Visit 4

(n¼ 1637)

All visits

(n¼ 10,142)

Number of families, n 1213 1118 736 1177 2106

Parents, n (%) 1992 (46.8%) 1491 (50.8%) 792 (60.0%) 1011 (61.8%) 5286 (52.1%)

Children, n (%) 2260 (53.2%) 1443 (49.2%) 527 (40.0%) 626 (38.2%) 4856 (47.9%)

Male, n (%) 2137 (50.3%) 1460 (49.8%) 665 (50.4%) 799 (48.8%) 5061 (49.9%)

Age (yrs), mean� sd 27.0� 14.3 32.0� 15.3 38.6� 15.6 49.5� 14.1 33.6� 16.7

Age parents (yrs), mean� sd 41.4� 5.0 46.2� 5.6 49.4� 8.5 59.6� 6.0 47.5� 8.9

Age children (yrs), mean� sd 14.3� 3.9 17.4� 4.5 21.9� 5.9 33.2� 5.1 18.4� 7.6

Heart Rate (bpm), mean� sd 70.1� 12.2 68.2� 12.1 64.6� 11.0 62.4� 9.6 67.6� 12.0

Covariates

Beta-blockers, n (%) 21 (0.5%) 38 (1.3%) 17 (1.3%) 136 (8.3%) 212 (2.1%)

Coffee/Tea, n (%) 1962 (46.1%) 1717 (58.5%) 1012 (76.7%) 1528 (93.3%) 6219 (61.3%)

Sport, n (%) 2598 (61.1%) 1167 (39.8%) 398 (30.2%) 842 (51.4%) 5005 (49.3%)

Tobacco, n (%) 786 (18.5%) 637 (21.7%) 291 (22.1%) 377 (23.0%) 2091 (20.6%)

Alcohol, n (%) 1808 (42.5%) 1373 (46.8%) 511 (38.7%) 1382 (84.4%) 5074 (50.0%)

(b)

Visit 1

(n¼ 1461)

Visit 2

(n¼ 1232)

Visit 3

(n¼ 718)

Visit 4

(n¼ 1517)

All visits

(n¼ 4928)

Number of families, n 667 618 442 1114 1200

Parents, n (%) 915 (62.6%) 794 (64.4%) 232 (32.3%) 935 (61.6%) 3130 (63.5%)

Children, n (%) 546 (37.4%) 438 (35.6%) 486 (67.7%) 582 (38.4%) 1798 (36.5%)

Male, n (%) 702 (48.0%) 604 (49.0%) 354 (49.3%) 743 (49.0%) 2403 (48.8%)

Age (yrs), mean� sd 31.8� 13.9 36.3� 14.8 41.9� 14.5 49.4� 14.1 39.8� 16.0

Age parents (yrs), mean� sd 41.9� 4.9 46.5� 5.6 50.9� 7.1 59.6� 6.2 49.7� 9.1

Age children (yrs), mean� sd 14.8� 4.5 17.8� 5.0 23.2� 5.3 33.2� 5.1 22.6� 9.2

Heart Rate (bpm), mean� sd 68.5� 11.5 67.2� 11.7 63.8� 10.3 62.5� 9.6 65.6� 11.1

Covariates

Beta-blockers, n (%) 7 (0.5%) 15 (1.2%) 9 (1.3%) 126 (8.3%) 157 (3.2%)

Coffee/Tea, n (%) 862 (59.0%) 833 (67.6%) 573 (79.8%) 1412 (93.1%) 3680 (74.7%)

Sport, n (%) 1116 (76.4%) 468 (38.0%) 196 (27.3%) 775 (51.1%) 2555 (51.8%)

Tobacco, n (%) 234 (16.0%) 220 (17.9%) 113 (15.7%) 343 (22.6%) 910 (18.5%)

Alcohol, n (%) 694 (47.5%) 625 (50.7%) 306 (42.6%) 1288 (84.9%) 2913 (59.1%)

bpm: beats per minute; sd: standard deviation; yrs: years

Table 2. Distribution of subjects who attempted one or more

visits (up to four).

All

subjects

Subset of

subjects with

genetic data

Number of visits in

which subjects

participated

1 1322 23

2 1571 311

3 1078 685

4 611 557

Total 10,142 4928
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of family relationships between pairs of individuals (i.e.
unrelated, 0; parents–offspring, 0.5; full-sibling, 0.5; half-
sibling, 0.25; etc.).

Genetic data quality control. The quality of the genotype
data was checked with the R package Gaston.23 Only
polymorphic autosomal single nucleotide polymorph-
isms (SNPs) were kept; then SNPs with a call
rate <99%, Hardy–Weinberg equilibrium with p
value < 10�8, or one of each duplicated SNP pair
(same chromosome, same position) were excluded.
Samples with a call rate <95% and those with aberrant
heterozygosity (hz; mean hz� 3 standard deviations)
were also excluded. The sample homogeneity was
assessed using principal component analysis on foun-
ders and no outlying individual was found. After qual-
ity control steps, 526,785 SNPs were available for 1590
individuals.

GRM. Traditional pedigree matrices are now often
replaced by GRMs, which are computed using poly-
morphic SNPs. The GRM contains genotype correl-
ations, which estimate genomic relatedness between
pairs of individuals. For each pair of individuals, the
genotype correlation is the sum of the products of stan-
dardized genotypes between two individuals.9,16,24,25

The use of GRM allowed a better inference of related-
ness between siblings, instead of an expected average.

Heritability estimation. Subsequently, the two matrices
(pedigree and GRM) were used in a linear mixed

model to estimate the variance captured by additive
genetic effects via average information restricted max-
imum likelihood analysis, implemented in the R pack-
age Gaston23

Y ¼ X�þ !þ �H þ �Ind þ �V þ "

where Y is the vector of phenotypes (HR), X is the
covariates matrix, b is a fixed effect vector of covariates,
!�N(0,sK) is the individual genetic random effect
vector, where K is the GRM or the pedigree matrix,
di�N(0,ci�i), i2 {H, Ind, V}, are potential random
effect vectors used to correct household effects, individ-
ual effects and/or visit effects, respectively, �i is the
corresponding design matrix, and e�N(0,r2I) is the
residual vector. Then, the heritability is usually esti-
mated by

h2 ¼
�

� þ �H þ �Ind þ �V þ �2

For each time-point and for all visits taken together,
three models were performed, with first all participants
(using the pedigree matrix); second, the subset of geno-
typed individuals using GRM; and, third, the subset of
genotyped individuals using pedigree matrix (in order
to compare results from the pedigree matrix and GRM
within the same group of individuals). All models were
fitted with all fixed effects and with a random house-
hold effect. When all visits were gathered together,
we added two random effects (cv for visit and cind for
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Figure 1. Histograms of the numbers of family members in the same household effect for each of the four visits: (a) for all

participants; (b) for genotyped individuals only.
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individual effect) to take into account the variance com-
ponent resulting from repeated measures.

In the supplementary materials, three other models
are presented in order to test the model for sensitivity
and robustness: (a) with no fixed effect and no house-
hold effects; (b) with all covariates as fixed effects
and no household effects; and (c) with age and sex as
covariates and household effects. In addition, in the
supplementary materials, gender stratified analyses
have also been realized.

Results

Characteristics of the study population detailed by
visit are presented in Table 1. Figure 1 represents the
number of family members included in one household
effect according to each visit. At the first visit, 54% of
subjects belonged to families comprising four members,
whereas for the fourth visit, 61% of subjects did not
share any common environment (according to our def-
inition of household effect). The subset of genotyped
individuals corresponds to participants who attended
the fourth visit (Table 1(b)) as the family structure is

different. This is because only half of the initially
included participants attended visit four, and the pro-
portion of parents was higher in this last visit. Indeed,
children from visit one (which were young adults at
visit four) were less likely to attend visit four than
their parents. Consequently, only 13% of genotyped
subjects at visit one belonged to 4-member families.

Scatterplots and correlation tests between parent–
offspring pairs showed that parental and offspring
HR are significantly correlated (see Supplementary
Figure 1) suggesting a heritable part of HR. Table 3
presents the percentages of variance decomposition of
HR for each of the four visits and for all visits taken
together. We showed that heritability estimations are
sensitive to the time-point, showing large heterogeneity
of variance decomposition, and then of HR heritability
estimations depending on the visit studied (h2 from
19% to 39% using the pedigree matrix and from 14%
to 32% using GRM for visit one and for visit three,
respectively).

It is also important to note that variance decompos-
itions, calculated from GRM or the pedigree matrix,
were very similar for the subset of genotyped

Table 3. Percentages of variance decomposition for each visit and for all visits: (a) for all partici-

pants; (b) for genotyped participants.

Heritability

h2 (%)

Household

effect (%)

Repeated

measures (%)

Residual

variance (%)

(a)

Visit 1 (n¼ 4252) 18.96 9.48 71.56

Visit 2 (n¼ 2934) 29.92 3.33 66.75

Visit 3 (n¼ 1319) 39.48 0.30 60.22

Visit 4 (n¼ 1642) 30.87 3.87 65.26

All visits (n¼ 10,142) 24.53 2.90 24.87 47.70

(b)

Visit 1 (n¼ 1461)

GRM 13.81 6.46 79.73

Kinship 11.36 7.30 81.34

Visit 2 (n¼ 1232)

GRM 21.08 4.65 74.26

Kinship 21.72 4.22 74.06

Visit 3 (n¼ 718)

GRM 22.78 0.00 77.22

Kinship 22.56 0.00 77.44

Visit 4 (n¼ 1517)

GRM 31.72 4.02 64.25

Kinship 31.15 3.68 65.17

All visits (n¼ 4928)

GRM 23.98 1.98 22.85 51.18

Kinship 23.23 1.98 23.61 51.18

GRM: genetic relatedness matrix

Xhaard et al. 5



individuals. Conversely, when comparing results
obtained for all individuals and for the subset of geno-
typed individuals, they were quite discordant, and her-
itability estimates were almost always lower for the
subset of genotyped individuals, whether using GRM
or the pedigree matrix (for example, at visit three,
h2¼ 39% versus 22%, respectively, for all individuals
and for the subset of genotyped individuals). When we
considered all visits together, heritability estimates were
homogeneous according to the model tested, based on
either GRM or the pedigree matrix (from 23% to 25%,
respectively).

In the supplementary material, we show the results
for variance decompositions using three other models;
first, no covariate and no household effect; second, all
covariates and no household effect; and third, sex, age,
and household effect. We did not find any substantial
difference between results from the pedigree matrix and
GRM (Supplementary Tables 1–3), but we showed

differences in estimates according to the model and
the structure of the dataset (i.e. the visit studied).

Gender stratified analysis for each visit
(Supplementary Table 4) showed no substantial differ-
ences from the results obtained in the whole population.
However, we found that household effect is more import-
ant for women than for men. Figure 2 shows histograms
of variance decomposition for each visit and all visits
taken together. We showed that only a small part of vari-
ance is explained by a common household effect (1.98%
for the subset of genotyped subjects to 2.90% for all
subjects when considering all visits), except for visit one,
where almost all participants of a same family were gath-
ered into the same household effect. An important part of
the variance remained unexplained; after accounting for
repeated measures, genetic and household effects, the pro-
portion of the variance that remained unexplained for
HR ranged from 48% (for all subjects) to 51% (for the
subset of genotyped subjects).
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Figure 2. Histograms of variance decompositions according to the four visits and all visits: (a) for all participants (with pedigree

matrix); (b) for individuals genotyped only (with genetic relatedness matrix (GRM)).
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Fixed effects (from covariates) account for 12%
(with GRM) and 17% (with the pedigree matrix) of
the total variance, but the part of variance explained
by these fixed effects has been removed from the total
variance in our heritability estimate models (data
not shown).

Discussion

Estimates of heritability of resting HR using multivari-
able-adjusted analysis of multiple-points suggests that
about 25% of the observed HR variance can be attrib-
uted to additive genetic factors. This finding is in the
lower range of previously published estimates from
family studies,1,14,16,18 and is largely lower than those
from twin studies.13,15,17 Common environmental
effects do not seem to make a substantial contribution
to variance in our study (less than 3%), whereas the
intrinsic individual variability of HR was of a similar
magnitude to the heritability (approximately 25% of
individual effect assessed with repeated measures).

Finally, approximately 50% of the HR variance
remained unexplained. This can be attributed to under-
lying interactions between genetic and environmental
effects,1 and to unaccounted genetic effects, such as
dominance or epigenetic factors. Other unmeasured
environmental factors may have been omitted in our
study, even if our study design was especially dedicated
to consider the majority of known cofactors in the
estimation.

‘‘Novelty’’ of the approach

In comparison with previously published results, our
study presents the major advantage of estimating HR
heritability from multiple time-point measures in a
family cohort (i.e. with a wide age distribution).
Moreover, some other studies used only a few covari-
ates as adjustment variables, whereas in our study, we
have tried to adjust the estimations for the majority of
known confounding factors (including smoking status,
physical activities, cardiovascular drugs intake, coffee,
tea, and alcohol consumption). Lastly, in our study,
we have used both GRM and the pedigree matrix
with multiple time-point measures of HR; this
approach has probably limited the misestimation of
HR heritability.

Heritability of HR in a sample comprising
a majority of children

Heritability is a population-based estimate, sensitive to
the characteristics of the population in which it is esti-
mated. Therefore, it could vary across populations,
environments, and ages.11,12 To the best of the authors’

knowledge, our cohort is one of the first European
cohorts with a sizeable proportion of young children
(at the first visit). The low heritability estimate we
observed at visit one suggests that factors other than
genetic features affect HR in children, an aspect which
has, to the best of the authors’ knowledge, not been
previously emphasized. It could also suggest that HR
measurement variability/miscalculation in children
could bias heritability estimates, even if we have used
a complex method to take into account the HR vari-
ability according to the age of the subjects.

Validation of heritability estimates using the
pedigree matrix or GRM

Heritability estimation may also be affected by the pedi-
gree structure,11 which is reflected in our study by the
difference in heritability estimates according to the
sample used (subset of genotyped subjects or all
the cohort participants) and between visits. However,
the results do not differ largely according to the sample
when considering all visits together, which reinforces
the robustness of our estimations (Table 3(b) and
Supplementary Tables 1–3).

Moreover, the increasing availability of dense geno-
typing array data and the use of GRM provide a real
advantage for heritability estimation accuracy, and
hence minimize the potential bias due to false genea-
logical data.26 To the best of the authors’ knowledge,
very few studies on HR heritability have used GRM.16

Our study provides the advantage of using both
GRM and the pedigree matrix in order to estimate
HR heritability. In our study, the results suggest that
GRM does not substantially add to the classical pedi-
gree matrix approach, as estimates were very similar
across methods (23.98% with GRM, versus 23.23%
with pedigree matrix). This result shows that there are
probably very few pedigree errors in our very well-char-
acterized family-based population. However, the use of
GRM provides three additional advantages: 1. it gives
the opportunity to verify family declared relationship;
2. it provides a better estimation for sibling genetic
relatedness; and 3. it takes into account the estimation
of genetic relatedness between unrelated subjects.

Household effect

In our study, common household effect only has a small
contribution to the HR variance, which is in accord-
ance with previous findings.1,27 However, estimating
this effect is very challenging due to the definition of
‘‘common environment.’’ We have chosen to consider
one definition of ‘‘household effect’’ (i.e. children were
considered as sharing the same environment as their
parents if aged less than 20 years old). Using this

Xhaard et al. 7



definition, our results suggest that a very small propor-
tion of HR variability is explained by household effect;
genetic and unknown factors appear as largely more
important in explaining HR variability. Moreover,
we identified a differential household effect according
to gender, which is more pronounced in women than in
men. However, this differential effect is difficult to
ascertain as we necessarily lost the couple effect in the
household effect in this analysis.

If we consider fixed effects in the estimation, the
proportion of unexplained variance remain large (40–
45% according to the model tested, data not shown).

Limitation

The size of the genotyped subset of participants is mod-
erate when compared with other population studies.
Some participants were lost to follow-up in the last
visits, which has modified the familial structure of the
sample through each visit. As already acknowledged,
the misestimation of HR at the first visit may have
been frequent in children, however, the difficulty to cor-
rectly assess HR in children is not limited to the scope
of this study.

Because we have included visit and individual effects,
an important part of the variance (about 25%) was
attributed to repeated measures, which could be due
to changes in methods for HR measurement during
the 20 years’ follow-up. It is possible that standardized
HR measurements would have decreased variance
explained by repeated measures and consequently
increased heritability estimations.

Finally, this is a single-center study, recruiting par-
ticipants from a limited geographic area during a rou-
tine examination at the Center for Preventive Medicine
that investigates fairly homogenous participants. Yet,
this has permitted the use of most of the genetic data, as
outliers were infrequent.

Clinical and research implications

HR is central to the prediction of many cardiovascular
events, including the occurrence of heart failure.4 Our
study suggests that HR heritability is only 25%, and
that half of the variation of HR remains unexplained
(even if fixed effects are included in the model), which
could appear surprisingly high for one of the strongest
cardiovascular risk markers. This result suggests that
other unknown factors, not assessed in our study, are
associated with HR differences across individuals. In
other words, HR could be an integrated marker of
risk that is neither the consequence of classical factors
associated with cardiovascular risk as assessed in our
analysis (activity level, smoking status, age, and
gender), nor determined by inherited genetic features.

Our study strongly reinforces, using a comprehen-
sive analysis, that we still do not fully understand the
determinants of elevated HR. Variations in HR could
be the consequence of subtle preclinical changes in car-
diovascular function, subsequently associated with clin-
ical cardiovascular events. Alternatively, HR could be a
causal trigger of subsequent cardiovascular events.
To date, no preventive trials specifically focusing on
HR reduction have been undertaken, possibly because
of our lack of understanding of its underlying bio-
logical determinants and our uncertainty in the causal-
ity between HR and subsequent cardiovascular
outcome. To some extent, our study emphasizes the
need to better understand the pathophysiology under-
lying higher resting HR, possibly to help tailor inter-
ventions targeting this important cardiovascular risk
marker.

Conclusion

Using a comprehensive analysis based on a family
cohort, including the data of multiple visits and
GRM, we have found that HR variability is about
25% from genetic origin, 25% from repeated measures,
and 50% remains unexplained.
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